The fundamental diagram of autonomous vehicles: Traffic state estimation and evidence from vehicle trajectories

IF 14.5 Q1 TRANSPORTATION
Michail A. Makridis , Shaimaa K. El-Baklish , Anastasios Kouvelas , Jorge A. Laval
{"title":"The fundamental diagram of autonomous vehicles: Traffic state estimation and evidence from vehicle trajectories","authors":"Michail A. Makridis ,&nbsp;Shaimaa K. El-Baklish ,&nbsp;Anastasios Kouvelas ,&nbsp;Jorge A. Laval","doi":"10.1016/j.commtr.2025.100212","DOIUrl":null,"url":null,"abstract":"<div><div>The fundamental diagram (FD) is a key tool in traffic flow theory, describing the relationship between traffic flow and density at the link level. Traditionally, FD estimation relies on data from static sensors, although vehicle trajectory data provides an alternative approach. Driver heterogeneity strongly influences the shape and scatter of the FD and is crucial for traffic management. Autonomous vehicles (AVs), exhibiting distinct driving behavior from human drivers, are expected to alter the FD. However, limited observations of AVs in stationary conditions have constrained research in this area. This study addresses this gap by introducing the platoon fundamental diagram (PFD), a simple method to infer empirical FDs from platoon trajectory data. PFD derives pseudo-states from vehicle trajectories and aggregates them to capture consistent relationships between flow, density, and speed—without requiring stationary conditions or backward wave speed estimation. The results highlight the impact of AVs on traffic flow capacity, driver heterogeneity, and oscillation propagation. Comparative analysis with human-driven experiments provides additional insights. Furthermore, the PFD's potential as a practical tool for traffic state estimation in mixed traffic conditions is demonstrated through real-world applications using NGSIM and I–24 Motion datasets.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100212"},"PeriodicalIF":14.5000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The fundamental diagram (FD) is a key tool in traffic flow theory, describing the relationship between traffic flow and density at the link level. Traditionally, FD estimation relies on data from static sensors, although vehicle trajectory data provides an alternative approach. Driver heterogeneity strongly influences the shape and scatter of the FD and is crucial for traffic management. Autonomous vehicles (AVs), exhibiting distinct driving behavior from human drivers, are expected to alter the FD. However, limited observations of AVs in stationary conditions have constrained research in this area. This study addresses this gap by introducing the platoon fundamental diagram (PFD), a simple method to infer empirical FDs from platoon trajectory data. PFD derives pseudo-states from vehicle trajectories and aggregates them to capture consistent relationships between flow, density, and speed—without requiring stationary conditions or backward wave speed estimation. The results highlight the impact of AVs on traffic flow capacity, driver heterogeneity, and oscillation propagation. Comparative analysis with human-driven experiments provides additional insights. Furthermore, the PFD's potential as a practical tool for traffic state estimation in mixed traffic conditions is demonstrated through real-world applications using NGSIM and I–24 Motion datasets.
自动驾驶汽车的基本图:交通状态估计和车辆轨迹证据
基本图(FD)是交通流理论中的一个重要工具,它描述了交通流与交通密度之间的关系。传统上,FD估计依赖于静态传感器的数据,尽管车辆轨迹数据提供了另一种方法。驾驶员异质性强烈影响FD的形状和分布,对交通管理至关重要。自动驾驶汽车(AVs)表现出与人类驾驶员截然不同的驾驶行为,有望改变FD。然而,在固定条件下对自动驾驶汽车的有限观察限制了这一领域的研究。本研究通过引入从排轨迹数据推断经验fd的简单方法——排基本图(PFD)来解决这一问题。PFD从车辆轨迹中提取伪状态,并将它们聚合起来,以捕获流量、密度和速度之间的一致关系,而不需要固定条件或反向波速估计。研究结果强调了自动驾驶汽车对交通流容量、驾驶员异质性和振荡传播的影响。与人为实验的比较分析提供了更多的见解。此外,通过使用NGSIM和I-24运动数据集的实际应用,证明了PFD作为混合交通条件下交通状态估计的实用工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信