{"title":"Bayesian optimization for interval selection in PLS models","authors":"Nicolás Hernández , Yoonsun Choi , Tom Fearn","doi":"10.1016/j.chemolab.2025.105541","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel Bayesian optimization framework for interval selection in Partial Least Squares (PLS) regression. Unlike traditional iPLS variants that rely on fixed or grid-based intervals, our approach adaptively searches over the discrete space of interval positions of a pre-defined width using a Gaussian Process surrogate model and an acquisition function. This enables the selection of one or more informative spectral regions without exhaustive enumeration or manual tuning. Through synthetic and real-world spectroscopic datasets, we demonstrate that the proposed method consistently identifies chemically relevant intervals, reduces model complexity, and improves predictive accuracy compared to full-spectrum PLS and stepwise interval selection techniques. A Monte Carlo study further confirms the robustness and convergence of the algorithm across varying signal complexities and uncertainty levels. This flexible, data-efficient approach offers an interpretable and computationally scalable alternative for chemometric applications.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"267 ","pages":"Article 105541"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925002266","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel Bayesian optimization framework for interval selection in Partial Least Squares (PLS) regression. Unlike traditional iPLS variants that rely on fixed or grid-based intervals, our approach adaptively searches over the discrete space of interval positions of a pre-defined width using a Gaussian Process surrogate model and an acquisition function. This enables the selection of one or more informative spectral regions without exhaustive enumeration or manual tuning. Through synthetic and real-world spectroscopic datasets, we demonstrate that the proposed method consistently identifies chemically relevant intervals, reduces model complexity, and improves predictive accuracy compared to full-spectrum PLS and stepwise interval selection techniques. A Monte Carlo study further confirms the robustness and convergence of the algorithm across varying signal complexities and uncertainty levels. This flexible, data-efficient approach offers an interpretable and computationally scalable alternative for chemometric applications.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.