Co–Zn Codoped β-Ni(OH)2@g-C3N4 Electrode with Exceptional Photothermal-Driven Pseudo-Capacitance Improvement

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Liru Yan, , , Shishuai Sun*, , , Shuangting Ruan*, , , Xiaocheng Liu, , , Huanqi Cao, , and , Shougen Yin*, 
{"title":"Co–Zn Codoped β-Ni(OH)2@g-C3N4 Electrode with Exceptional Photothermal-Driven Pseudo-Capacitance Improvement","authors":"Liru Yan,&nbsp;, ,&nbsp;Shishuai Sun*,&nbsp;, ,&nbsp;Shuangting Ruan*,&nbsp;, ,&nbsp;Xiaocheng Liu,&nbsp;, ,&nbsp;Huanqi Cao,&nbsp;, and ,&nbsp;Shougen Yin*,&nbsp;","doi":"10.1021/acsaem.5c01186","DOIUrl":null,"url":null,"abstract":"<p >Design of the photosensitive electrode material provides an effective strategy to improve the capacity and stability of supercapacitors. In this study, the photothermal-driven cobalt–zinc-doped Ni(OH)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>@NF nanoflower electrode materials were prepared base on the in situ chemical etching strategy. The electrochemical performance indicated that the optimized CZNC<sub>2.18</sub> (cobalt–zinc codoped β-Ni(OH)<sub>2</sub>@g-C<sub>3</sub>N<sub>4</sub>) electrode material with exceptional stability (103.74% capacitance retention after 5000 cycles at 20 mA/cm<sup>2</sup>) exhibited an ultrahigh capacitance of 19.10 F/cm<sup>2</sup> at a current density of 10 mA/cm<sup>2</sup> under illumination, compared to 12.8 F/cm<sup>2</sup> under dark conditions, achieving a light gain of 149%. The assembled asymmetric photothermal-assisted supercapacitor device delivers energy densities of 3.55 mWh/cm<sup>2</sup> (1.23 mWh/cm<sup>2</sup>) at corresponding power densities of 8.39 mW/cm<sup>2</sup> (37.03 mW/cm<sup>2</sup>) under illumination, surpassing performance metrics observed under dark conditions. The synergistic effects of photogenerated carriers (holes oxidizing Ni(OH)<sub>2</sub> to NiOOH and electrons enhancing conductivity), Zn/Co codoping-induced conductivity improvement, and photothermal-assisted ion transport collectively enable CZNC<sub>2.18</sub> exceptional photoelectrochemical performance, establishing a paradigm for light-responsive energy storage material design.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14075–14085"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01186","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Design of the photosensitive electrode material provides an effective strategy to improve the capacity and stability of supercapacitors. In this study, the photothermal-driven cobalt–zinc-doped Ni(OH)2/g-C3N4@NF nanoflower electrode materials were prepared base on the in situ chemical etching strategy. The electrochemical performance indicated that the optimized CZNC2.18 (cobalt–zinc codoped β-Ni(OH)2@g-C3N4) electrode material with exceptional stability (103.74% capacitance retention after 5000 cycles at 20 mA/cm2) exhibited an ultrahigh capacitance of 19.10 F/cm2 at a current density of 10 mA/cm2 under illumination, compared to 12.8 F/cm2 under dark conditions, achieving a light gain of 149%. The assembled asymmetric photothermal-assisted supercapacitor device delivers energy densities of 3.55 mWh/cm2 (1.23 mWh/cm2) at corresponding power densities of 8.39 mW/cm2 (37.03 mW/cm2) under illumination, surpassing performance metrics observed under dark conditions. The synergistic effects of photogenerated carriers (holes oxidizing Ni(OH)2 to NiOOH and electrons enhancing conductivity), Zn/Co codoping-induced conductivity improvement, and photothermal-assisted ion transport collectively enable CZNC2.18 exceptional photoelectrochemical performance, establishing a paradigm for light-responsive energy storage material design.

Abstract Image

Co-Zn共掺杂β-Ni(OH)2@g-C3N4电极及其光热驱动伪电容的改善
光敏电极材料的设计为提高超级电容器的容量和稳定性提供了有效的策略。本研究基于原位化学刻蚀策略制备了光热驱动的钴锌掺杂Ni(OH)2/g-C3N4@NF纳米花电极材料。电化学性能表明,优化后的CZNC2.18(钴锌共掺杂β-Ni(OH)2@g-C3N4)电极材料具有优异的稳定性,在20 mA/cm2下,5000次循环后电容保持率为103.74%,在光照条件下,在10 mA/cm2电流密度下具有19.10 F/cm2的超高电容,而在黑暗条件下为12.8 F/cm2,光增益为149%。该组装的非对称光热辅助超级电容器器件在照明下的能量密度为8.39 mW/cm2 (37.03 mW/cm2),能量密度为3.55 mWh/cm2 (1.23 mWh/cm2),超过了在黑暗条件下观察到的性能指标。光生载流子(空穴将Ni(OH)2氧化为NiOOH和电子增强电导率)、Zn/Co共掺杂诱导电导率提高以及光热辅助离子输运的协同效应共同使CZNC2.18具有优异的光电化学性能,为光响应储能材料设计树立了典范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信