SnO2 Modification with Tetrapropylammonium Hydroxide to Enhance Bottom Contact for High-Performance Perovskite Solar Cells

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zhengjie Xu*, , , Qiang Lou, , , Xuan Lu, , , Liping Xu, , , Yufeng Jin, , and , Hang Zhou*, 
{"title":"SnO2 Modification with Tetrapropylammonium Hydroxide to Enhance Bottom Contact for High-Performance Perovskite Solar Cells","authors":"Zhengjie Xu*,&nbsp;, ,&nbsp;Qiang Lou,&nbsp;, ,&nbsp;Xuan Lu,&nbsp;, ,&nbsp;Liping Xu,&nbsp;, ,&nbsp;Yufeng Jin,&nbsp;, and ,&nbsp;Hang Zhou*,&nbsp;","doi":"10.1021/acsaem.5c02089","DOIUrl":null,"url":null,"abstract":"<p >The bottom interface in n-i-p structured perovskite solar cells plays a pivotal role in determining both device efficiency and long-term operational stability. Surface modification of colloidal SnO<sub>2</sub> nanoparticles at an early stage presents a promising strategy to tailor their structural and electronic characteristics, thereby influencing the crystallization behavior of the subsequently deposited perovskite layer. In this work, we employ tetrapropylammonium hydroxide (TPAOH) to functionalize SnO<sub>2</sub> surfaces, effectively passivating the intrinsic defects such as tin interstitials (Sn<sub>i</sub>) and oxygen vacancies (V<sub>O</sub>). This modification not only optimizes the optoelectronic properties of SnO<sub>2</sub> but also refines film morphology. Moreover, the introduction of TPA<sup>+</sup> ions contributes to the stabilization of the perovskite bottom interface by passivating iodine interstitials (I<sub>i</sub>) and formamidinium vacancies (V<sub>FA</sub>), thereby mitigating ion migration. As a result, devices employing TPA<sup>+</sup>-modified SnO<sub>2</sub> (denoted as SnO<sub>2</sub>-TPA) achieve a power conversion efficiency (PCE) of 24.32% when paired with a perovskite film of 1.53 eV bandgap─surpassing the performance of devices using commercial SnO<sub>2</sub> (denoted as SnO<sub>2</sub>-c), which yields a PCE of 22.76%. Notably, flexible perovskite solar cells incorporating SnO<sub>2</sub>-TPA demonstrate a PCE of 19.60%, representing an approximate 20% improvement over those using SnO<sub>2</sub>-c. Furthermore, SnO<sub>2</sub>-TPA-based devices exhibit enhanced stability under various stress conditions, including continuous ultraviolet (395 nm) irradiation for ∼90 h, thermal annealing at 40 °C for 700 h, and ambient humidity (15% relative humidity) for 1200 h.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 19","pages":"14437–14445"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02089","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The bottom interface in n-i-p structured perovskite solar cells plays a pivotal role in determining both device efficiency and long-term operational stability. Surface modification of colloidal SnO2 nanoparticles at an early stage presents a promising strategy to tailor their structural and electronic characteristics, thereby influencing the crystallization behavior of the subsequently deposited perovskite layer. In this work, we employ tetrapropylammonium hydroxide (TPAOH) to functionalize SnO2 surfaces, effectively passivating the intrinsic defects such as tin interstitials (Sni) and oxygen vacancies (VO). This modification not only optimizes the optoelectronic properties of SnO2 but also refines film morphology. Moreover, the introduction of TPA+ ions contributes to the stabilization of the perovskite bottom interface by passivating iodine interstitials (Ii) and formamidinium vacancies (VFA), thereby mitigating ion migration. As a result, devices employing TPA+-modified SnO2 (denoted as SnO2-TPA) achieve a power conversion efficiency (PCE) of 24.32% when paired with a perovskite film of 1.53 eV bandgap─surpassing the performance of devices using commercial SnO2 (denoted as SnO2-c), which yields a PCE of 22.76%. Notably, flexible perovskite solar cells incorporating SnO2-TPA demonstrate a PCE of 19.60%, representing an approximate 20% improvement over those using SnO2-c. Furthermore, SnO2-TPA-based devices exhibit enhanced stability under various stress conditions, including continuous ultraviolet (395 nm) irradiation for ∼90 h, thermal annealing at 40 °C for 700 h, and ambient humidity (15% relative humidity) for 1200 h.

Abstract Image

四丙基氢氧化铵改性SnO2增强高性能钙钛矿太阳能电池底部接触
n-i-p结构钙钛矿太阳能电池的底部界面在决定器件效率和长期运行稳定性方面起着关键作用。在早期阶段对胶体SnO2纳米颗粒进行表面修饰是一种有前途的策略,可以调整其结构和电子特性,从而影响随后沉积的钙钛矿层的结晶行为。在这项工作中,我们使用四丙基氢氧化铵(TPAOH)对SnO2表面进行功能化,有效地钝化了锡间隙(Sni)和氧空位(VO)等固有缺陷。这种修饰不仅优化了SnO2的光电性能,而且改善了薄膜的形貌。此外,TPA+离子的引入有助于通过钝化碘间隙(Ii)和甲脒空位(VFA)来稳定钙钛矿底部界面,从而减轻离子迁移。因此,采用TPA+修饰的SnO2(记为SnO2-TPA)的器件在配以1.53 eV带隙的钙钛矿薄膜时,功率转换效率(PCE)达到24.32%,超过了使用商用SnO2(记为SnO2-c)的器件的性能,后者的PCE为22.76%。值得注意的是,采用SnO2-TPA的柔性钙钛矿太阳能电池的PCE为19.60%,比使用SnO2-c的电池提高了约20%。此外,基于sno2 - tpa的器件在各种应力条件下表现出增强的稳定性,包括连续紫外线(395 nm)照射~ 90 h, 40°C热退火700 h,环境湿度(15%相对湿度)1200 h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信