Robust valuation and optimal harvesting of forestry resources in the presence of catastrophe risk and parameter uncertainty

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Ankush Agarwal, Christian Oliver Ewald, Yihan Zou
{"title":"Robust valuation and optimal harvesting of forestry resources in the presence of catastrophe risk and parameter uncertainty","authors":"Ankush Agarwal, Christian Oliver Ewald, Yihan Zou","doi":"10.1016/j.ejor.2025.10.007","DOIUrl":null,"url":null,"abstract":"We determine forest lease value and optimal harvesting strategies under model parameter uncertainty within stochastic bio-economic models that account for catastrophe risk. Catastrophic events are modeled as a Poisson point process, with a two-factor stochastic convenience yield model capturing the lumber spot price dynamics. Using lumber futures and US wildfire data, we estimate model parameters through Kalman filtering and maximum likelihood estimation and specify the model parameter uncertainty set as the 95% confidence region. We numerically determine the forest lease value under catastrophe risk and parameter uncertainty using reflected backward stochastic differential equations (RBSDEs) and establish conservative and optimistic bounds for lease values and optimal stopping boundaries for harvesting. Numerical experiments further explore how parameter uncertainty, catastrophe intensity, and carbon sequestration impact the lease valuation and harvesting decision. In particular, we explore the costs arising from this form of uncertainty in the form of a reduction of the lease value. These are implicit costs which can be attributed to climate risk, and are likely to become more significant as forestry resources play a larger role in the energy transition. We conclude that in the presence of parameter uncertainty, it is better to lean toward a conservative strategy reflecting, to some extent, the worst case than being overly optimistic. Moreover, our results suggest that convenience yield plays a substantial role in determining optimal harvesting strategies within the two-factor model adopted in this study.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"7 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.10.007","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We determine forest lease value and optimal harvesting strategies under model parameter uncertainty within stochastic bio-economic models that account for catastrophe risk. Catastrophic events are modeled as a Poisson point process, with a two-factor stochastic convenience yield model capturing the lumber spot price dynamics. Using lumber futures and US wildfire data, we estimate model parameters through Kalman filtering and maximum likelihood estimation and specify the model parameter uncertainty set as the 95% confidence region. We numerically determine the forest lease value under catastrophe risk and parameter uncertainty using reflected backward stochastic differential equations (RBSDEs) and establish conservative and optimistic bounds for lease values and optimal stopping boundaries for harvesting. Numerical experiments further explore how parameter uncertainty, catastrophe intensity, and carbon sequestration impact the lease valuation and harvesting decision. In particular, we explore the costs arising from this form of uncertainty in the form of a reduction of the lease value. These are implicit costs which can be attributed to climate risk, and are likely to become more significant as forestry resources play a larger role in the energy transition. We conclude that in the presence of parameter uncertainty, it is better to lean toward a conservative strategy reflecting, to some extent, the worst case than being overly optimistic. Moreover, our results suggest that convenience yield plays a substantial role in determining optimal harvesting strategies within the two-factor model adopted in this study.
巨灾风险和参数不确定性下林业资源的稳健评估和最佳采伐
在考虑巨灾风险的随机生物经济模型中,我们确定了模型参数不确定性下的森林租赁价值和最优采伐策略。灾难性事件建模为泊松点过程,用双因素随机方便产量模型捕捉木材现货价格动态。利用木材期货和美国野火数据,通过卡尔曼滤波和极大似然估计估计模型参数,并将模型参数不确定性集指定为95%置信区域。利用反射后向随机微分方程(RBSDEs)对巨灾风险和参数不确定性条件下的森林租赁值进行了数值计算,建立了租赁值的保守和乐观边界以及最优停止采伐边界。数值实验进一步探讨了参数不确定性、灾变强度和碳固存对租赁估价和收获决策的影响。特别是,我们探讨了这种形式的不确定性以减少租赁价值的形式产生的成本。这些隐性成本可归因于气候风险,随着林业资源在能源转型中发挥更大作用,这些成本可能变得更加显著。我们的结论是,在存在参数不确定性的情况下,在某种程度上,最好倾向于反映最坏情况的保守策略,而不是过于乐观。此外,我们的研究结果表明,在本研究采用的双因素模型中,方便产量在确定最佳收获策略方面起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信