Nonreciprocal quadrature squeezing in cavity–magnon optomechanics

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yilou Liu , Rui-Shan Zhao , Kai-Kai Zhang , Jin-Fang Li , Ren-Gang Wan , Hui Sun , Xiao-Tao Xie
{"title":"Nonreciprocal quadrature squeezing in cavity–magnon optomechanics","authors":"Yilou Liu ,&nbsp;Rui-Shan Zhao ,&nbsp;Kai-Kai Zhang ,&nbsp;Jin-Fang Li ,&nbsp;Ren-Gang Wan ,&nbsp;Hui Sun ,&nbsp;Xiao-Tao Xie","doi":"10.1016/j.chaos.2025.117368","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate an intriguing scheme to realize nonreciprocal quadrature squeezing in a composite system comprising a cavity coupled to a mechanical oscillator, a degenerate parametric amplifier (DPA), and a yttrium iron garnet (YIG) sphere. Through numerical simulations, we analyze the quadrature squeezing spectrum for different coupling modes. In the case of only cavity mode, increasing the nonlinear gain of the DPA enhances not only both the amplitude of the fluctuations and the squeezing strength, but also induces frequency shifts at the normal mode frequencies. Under cavity–magnon coupling conditions, the Barnett effect is used to generate nonreciprocal quadrature squeezing spectrum. The cavity–magnon coupling induces normal mode splitting, with the spacing between the split spectral dips being linearly related to the coupling strength. The nonreciprocal quadrature squeezing properties at the two normal mode frequencies are opposite, and their nonreciprocal intensity increase with the Barnett effect. When both magnon mode and mechanical mode couplings with the cavity mode are considered, the number of squeezing dips increases to three, all exhibiting significant nonreciprocity under the Barnett effect. Our research may offer new perspectives for the development of nonreciprocal magnon devices and quantum precision measurement.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117368"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013815","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate an intriguing scheme to realize nonreciprocal quadrature squeezing in a composite system comprising a cavity coupled to a mechanical oscillator, a degenerate parametric amplifier (DPA), and a yttrium iron garnet (YIG) sphere. Through numerical simulations, we analyze the quadrature squeezing spectrum for different coupling modes. In the case of only cavity mode, increasing the nonlinear gain of the DPA enhances not only both the amplitude of the fluctuations and the squeezing strength, but also induces frequency shifts at the normal mode frequencies. Under cavity–magnon coupling conditions, the Barnett effect is used to generate nonreciprocal quadrature squeezing spectrum. The cavity–magnon coupling induces normal mode splitting, with the spacing between the split spectral dips being linearly related to the coupling strength. The nonreciprocal quadrature squeezing properties at the two normal mode frequencies are opposite, and their nonreciprocal intensity increase with the Barnett effect. When both magnon mode and mechanical mode couplings with the cavity mode are considered, the number of squeezing dips increases to three, all exhibiting significant nonreciprocity under the Barnett effect. Our research may offer new perspectives for the development of nonreciprocal magnon devices and quantum precision measurement.
腔-磁振子光力学中的非互反正交挤压
我们研究了一种有趣的方案来实现非互反正交压缩的复合系统,该系统由一个腔耦合到一个机械振荡器,一个简并参数放大器(DPA)和一个钇铁石榴石(YIG)球组成。通过数值模拟,分析了不同耦合模式下的正交压缩谱。在仅为空腔模的情况下,增加DPA的非线性增益不仅可以增强波动幅度和压缩强度,而且还可以引起频移。在腔-磁振子耦合条件下,利用Barnett效应产生非倒易正交压缩谱。腔-磁振子耦合引起了正模分裂,分裂光谱衰减的间距与耦合强度成线性关系。两个正模态频率下的非倒易正交压缩特性相反,且其非倒易强度随Barnett效应而增大。当考虑磁振子模式和与腔模式耦合的机械模式时,压缩倾角的数量增加到3个,在Barnett效应下都表现出明显的非互易性。我们的研究为非倒易磁振子器件的发展和量子精密测量提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信