The linear and nonlinear stability of double diffusive convection with nonlinear Boussinesq approximation and vertical throughflow

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Pravesh Kumar , N. Deepika , Antony A. Hill
{"title":"The linear and nonlinear stability of double diffusive convection with nonlinear Boussinesq approximation and vertical throughflow","authors":"Pravesh Kumar ,&nbsp;N. Deepika ,&nbsp;Antony A. Hill","doi":"10.1016/j.chaos.2025.117273","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of the present study is to investigate the onset of double-diffusive convection in a horizontal porous layer saturated with fluid. The governing formulation employs the nonlinear Boussinesq approximation, with flow dynamics described by Forchheimer’s extension of Darcy’s law to incorporate quadratic drag effects. Permeable boundary conditions are considered to account for realistic exchange at the interfaces. Stability analysis is carried out through two complementary approaches: linear and nonlinear stability analyses. The eigenvalue problem for linear stability is solved using the Chebyshev tau spectral method, while the nonlinear stability boundary is determined via an energy method combined with a shooting technique and fourth-order Runge–Kutta method. This dual framework allows evaluation of the critical thermal Rayleigh number in both linear (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) and nonlinear (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span>) theories, thereby identifying subcritical instability regimes. The results reveal several significant trends. An increase in the Forchheimer coefficient (<span><math><mi>J</mi></math></span>) enhances flow resistance and delays the onset of convection. Larger Péclet numbers (<span><math><mrow><mi>P</mi><mi>e</mi></mrow></math></span>) amplify advective effects and further elevate the stability threshold, underscoring their stabilizing role. Nonlinear buoyancy contributions, represented by the parameters <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, provide additional damping under certain parameter ranges and contribute to further stabilization. In contrast, the Lewis number (<span><math><mrow><mi>L</mi><mi>e</mi></mrow></math></span>) is found to exert only a minor influence on the convective behavior of the system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117273"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792501286X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the present study is to investigate the onset of double-diffusive convection in a horizontal porous layer saturated with fluid. The governing formulation employs the nonlinear Boussinesq approximation, with flow dynamics described by Forchheimer’s extension of Darcy’s law to incorporate quadratic drag effects. Permeable boundary conditions are considered to account for realistic exchange at the interfaces. Stability analysis is carried out through two complementary approaches: linear and nonlinear stability analyses. The eigenvalue problem for linear stability is solved using the Chebyshev tau spectral method, while the nonlinear stability boundary is determined via an energy method combined with a shooting technique and fourth-order Runge–Kutta method. This dual framework allows evaluation of the critical thermal Rayleigh number in both linear (RL) and nonlinear (RE) theories, thereby identifying subcritical instability regimes. The results reveal several significant trends. An increase in the Forchheimer coefficient (J) enhances flow resistance and delays the onset of convection. Larger Péclet numbers (Pe) amplify advective effects and further elevate the stability threshold, underscoring their stabilizing role. Nonlinear buoyancy contributions, represented by the parameters a1 and b1, provide additional damping under certain parameter ranges and contribute to further stabilization. In contrast, the Lewis number (Le) is found to exert only a minor influence on the convective behavior of the system.
具有非线性Boussinesq近似和垂直通流的双扩散对流的线性和非线性稳定性
本研究的目的是研究饱和流体水平多孔层中双扩散对流的发生。控制公式采用非线性Boussinesq近似,流动动力学由Forchheimer对Darcy定律的扩展来描述,以纳入二次阻力效应。考虑了可渗透边界条件来解释界面上的实际交换。稳定性分析通过两种互补的方法进行:线性和非线性稳定性分析。采用切比雪夫谱法求解线性稳定性的特征值问题,采用能量法结合射击技术和四阶龙格-库塔法确定非线性稳定性边界。这种双重框架允许在线性(RL)和非线性(RE)理论中评估临界热瑞利数,从而确定亚临界不稳定状态。研究结果揭示了几个重要趋势。Forchheimer系数(J)的增加增加了流动阻力,延迟了对流的开始。较大的psamclet数(Pe)放大了平流效应,进一步提高了稳定阈值,凸显了其稳定作用。非线性浮力贡献,由参数a1和b1表示,在一定参数范围内提供额外的阻尼,有助于进一步稳定。相比之下,发现路易斯数(Le)对系统的对流行为只有很小的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信