Forecasting dengue cases through time-series modeling with Google Trends and deep neural networks

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kang Hao Cheong , Kainan Li , Dengxiu Yu , Xinxing Zhao
{"title":"Forecasting dengue cases through time-series modeling with Google Trends and deep neural networks","authors":"Kang Hao Cheong ,&nbsp;Kainan Li ,&nbsp;Dengxiu Yu ,&nbsp;Xinxing Zhao","doi":"10.1016/j.chaos.2025.117290","DOIUrl":null,"url":null,"abstract":"<div><div>Dengue fever remains a persistent public health challenge in tropical regions, characterized by complex transmission dynamics and nonlinear outbreak patterns. In this study, we propose a data-driven forecasting framework that fuses real-time public interest signals captured through Google Trends, with a suite of advanced deep learning models. Our approach leverages the inherent nonlinearities in online search behavior to anticipate weekly dengue incidence, achieving state-of-the-art performance across multiple forecasting horizons. Remarkably, we find that a single search term (“dengue”) exhibits strong predictive power, outperforming multivariate feature sets in several models. The findings highlight the potential of low-cost, population-level digital traces as proxies for epidemiological signals and offer a practical, interpretable, and scalable methodology for early outbreak detection in complex systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117290"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013037","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Dengue fever remains a persistent public health challenge in tropical regions, characterized by complex transmission dynamics and nonlinear outbreak patterns. In this study, we propose a data-driven forecasting framework that fuses real-time public interest signals captured through Google Trends, with a suite of advanced deep learning models. Our approach leverages the inherent nonlinearities in online search behavior to anticipate weekly dengue incidence, achieving state-of-the-art performance across multiple forecasting horizons. Remarkably, we find that a single search term (“dengue”) exhibits strong predictive power, outperforming multivariate feature sets in several models. The findings highlight the potential of low-cost, population-level digital traces as proxies for epidemiological signals and offer a practical, interpretable, and scalable methodology for early outbreak detection in complex systems.
基于谷歌趋势和深度神经网络的时间序列模型预测登革热病例
登革热仍然是热带地区持续存在的公共卫生挑战,其特点是传播动态复杂,疫情模式非线性。在本研究中,我们提出了一个数据驱动的预测框架,该框架将通过谷歌Trends捕获的实时公共利益信号与一套先进的深度学习模型融合在一起。我们的方法利用在线搜索行为中固有的非线性来预测每周登革热发病率,在多个预测范围内实现最先进的性能。值得注意的是,我们发现单个搜索词(“登革热”)显示出强大的预测能力,在几个模型中优于多变量特征集。研究结果强调了低成本、人群水平的数字痕迹作为流行病学信号代表的潜力,并为复杂系统中的早期疫情检测提供了一种实用、可解释和可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信