Bifurcation analysis and chaotic dynamics in an SIR model with nonlinear incidence and constrained healthcare capacity

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Shimli Dutta, Protyusha Dutta, Parvez Akhtar, Guruprasad Samanta
{"title":"Bifurcation analysis and chaotic dynamics in an SIR model with nonlinear incidence and constrained healthcare capacity","authors":"Shimli Dutta,&nbsp;Protyusha Dutta,&nbsp;Parvez Akhtar,&nbsp;Guruprasad Samanta","doi":"10.1016/j.chaos.2025.117329","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops and analyses an <span><math><mrow><mi>S</mi><mi>I</mi><mi>R</mi></mrow></math></span> epidemic model incorporating a non-monotone incidence rate that captures the combined effects of stringent governmental interventions, evolving social behavior, and public response. A distinctive feature of this work lies in examining how intra-specific competition among susceptible individuals for limited resources shapes the course of disease dynamics. Both autonomous and non-autonomous frameworks are examined, with special emphasis on the periodic variation in hospital bed availability—a critical yet often overlooked driver of epidemic dynamics. Analytical results establish conditions for the existence and stability of trivial, infection-free and endemic equilibria in relation to the basic reproduction number. Local stability shifts induced by transcritical, Hopf, and saddle–node bifurcations are explored, while two-parameter bifurcation analysis reveals regions of coexisting equilibria. Advanced bifurcation structures, including Bogdanov–Takens, generalized Hopf, and cusp points, are characterized, exposing transitions to complex and chaotic dynamics of the system. Sensitivity analysis identifies key parameters influencing outbreak intensity and continued persistence of the disease. Numerical simulations illustrate theoretical findings, indicating how healthcare capacity constraints, especially fluctuating hospital beds, profoundly shape epidemic trajectories. These results highlight the intricate interplay between medical resources, nonlinear transmission effects, and public health measures, offering strategic insights for designing adaptive, resource-aware intervention policies capable of mitigating epidemic impact under varying socio-behavioral and infrastructural conditions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117329"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013426","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops and analyses an SIR epidemic model incorporating a non-monotone incidence rate that captures the combined effects of stringent governmental interventions, evolving social behavior, and public response. A distinctive feature of this work lies in examining how intra-specific competition among susceptible individuals for limited resources shapes the course of disease dynamics. Both autonomous and non-autonomous frameworks are examined, with special emphasis on the periodic variation in hospital bed availability—a critical yet often overlooked driver of epidemic dynamics. Analytical results establish conditions for the existence and stability of trivial, infection-free and endemic equilibria in relation to the basic reproduction number. Local stability shifts induced by transcritical, Hopf, and saddle–node bifurcations are explored, while two-parameter bifurcation analysis reveals regions of coexisting equilibria. Advanced bifurcation structures, including Bogdanov–Takens, generalized Hopf, and cusp points, are characterized, exposing transitions to complex and chaotic dynamics of the system. Sensitivity analysis identifies key parameters influencing outbreak intensity and continued persistence of the disease. Numerical simulations illustrate theoretical findings, indicating how healthcare capacity constraints, especially fluctuating hospital beds, profoundly shape epidemic trajectories. These results highlight the intricate interplay between medical resources, nonlinear transmission effects, and public health measures, offering strategic insights for designing adaptive, resource-aware intervention policies capable of mitigating epidemic impact under varying socio-behavioral and infrastructural conditions.
具有非线性发病率和受限医疗保健能力的SIR模型的分岔分析和混沌动力学
本研究开发并分析了SIR流行病模型,该模型包含了非单调的发病率,该发病率捕获了严格的政府干预、不断演变的社会行为和公众反应的综合影响。这项工作的一个显著特征在于研究易感个体之间对有限资源的种内竞争如何塑造疾病动力学的过程。研究了自主和非自主框架,特别强调医院床位供应的周期性变化,这是流行病动态的一个关键但往往被忽视的驱动因素。分析结果建立了与基本繁殖数相关的平凡平衡、无感染平衡和地方性平衡存在和稳定的条件。探讨了由跨临界分岔、Hopf分岔和鞍节点分岔引起的局部稳定性转移,而双参数分岔分析揭示了共存平衡的区域。先进的分岔结构,包括Bogdanov-Takens,广义Hopf和尖点,被表征,暴露过渡到复杂和混沌的系统动力学。敏感性分析确定了影响暴发强度和疾病持续存在的关键参数。数值模拟说明了理论发现,表明医疗保健能力的限制,特别是医院病床的波动,如何深刻地塑造了流行病的轨迹。这些结果突出了医疗资源、非线性传播效应和公共卫生措施之间复杂的相互作用,为设计适应性强、资源意识强的干预政策提供了战略见解,这些政策能够在不同的社会行为和基础设施条件下减轻流行病的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信