Decoding global economic dynamic: A graph-based examination of contemporary ETF markets

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ru Geng, Hong-Kun Zhang, Yixian Gao, Gangnan Yuan
{"title":"Decoding global economic dynamic: A graph-based examination of contemporary ETF markets","authors":"Ru Geng, Hong-Kun Zhang, Yixian Gao, Gangnan Yuan","doi":"10.1016/j.chaos.2025.117313","DOIUrl":null,"url":null,"abstract":"Analyzing the dynamic interdependencies among global economies is critical for understanding financial risk and opportunity. In this work, we introduce a spatio-temporal attention-based graph neural network that models these complex relationships using Exchange-Traded Fund (ETF) indices from major global markets. Our framework provides a data-driven lens on economic interactions, uncovering how influence shifts between economies like the United States, China, and European nations, particularly during critical financial events such as the COVID-19 pandemic. The model not only reveals interpretable network structures—identifying the U.S. as a dominant global hub and China as a key regional one, but also significantly outperforms baseline methods in predicting future market trends. Ultimately, this study presents a powerful and transparent framework for decoding global economic dynamics and improving financial forecasting.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"40 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.117313","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing the dynamic interdependencies among global economies is critical for understanding financial risk and opportunity. In this work, we introduce a spatio-temporal attention-based graph neural network that models these complex relationships using Exchange-Traded Fund (ETF) indices from major global markets. Our framework provides a data-driven lens on economic interactions, uncovering how influence shifts between economies like the United States, China, and European nations, particularly during critical financial events such as the COVID-19 pandemic. The model not only reveals interpretable network structures—identifying the U.S. as a dominant global hub and China as a key regional one, but also significantly outperforms baseline methods in predicting future market trends. Ultimately, this study presents a powerful and transparent framework for decoding global economic dynamics and improving financial forecasting.
解读全球经济动态:当代ETF市场的图表分析
分析全球经济之间动态的相互依赖关系对于理解金融风险和机遇至关重要。在这项工作中,我们引入了一个基于时空注意力的图神经网络,该网络使用来自全球主要市场的交易所交易基金(ETF)指数来模拟这些复杂的关系。我们的框架为经济互动提供了一个数据驱动的视角,揭示了美国、中国和欧洲国家等经济体之间的影响力如何转移,特别是在2019冠状病毒病大流行等重大金融事件期间。该模型不仅揭示了可解释的网络结构——确定了美国是一个占主导地位的全球中心,而中国是一个关键的区域中心,而且在预测未来市场趋势方面也明显优于基线方法。最终,本研究为解读全球经济动态和改善金融预测提供了一个强大而透明的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信