Fractal-AIMAS synergy for multiscale consciousness modeling in neuro-cybernetic systems: A multifractal, Kuramoto oscillator, and hybrid neuroprosthetic approach

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jagjit Singh Dhatterwal, Dipesh
{"title":"Fractal-AIMAS synergy for multiscale consciousness modeling in neuro-cybernetic systems: A multifractal, Kuramoto oscillator, and hybrid neuroprosthetic approach","authors":"Jagjit Singh Dhatterwal, Dipesh","doi":"10.1016/j.chaos.2025.117393","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel framework for modeling conscious states by integrating fractal decomposition theory with Autonomous Intelligent Multi-Agent Systems (AIMAS) in brain-cyborg interfaces. The approach employs multifractal analysis (including Hausdorff dimension and MF-DFA) and Iterated Function Systems (IFS) to decompose hybrid neuro-silical architectures into scale-invariant components, revealing hierarchical and self-similar patterns in functional connectivity. Within the AIMAS architecture, consciousness is conceptualized as a self-organizing fractal attractor, where agents act as fractal feature extractors, coupled via Kuramoto oscillators over scale-free Koch networks. The system dynamics are modeled using stochastic partial differential equations (SPDEs), while distinct conscious states (e.g., wakefulness vs. anesthesia) are characterized using Lyapunov exponents and lacunarity-based strange attractors. Experimental validation is conducted using ECoG and neuroprosthetic datasets, along with synthetic Local Field Models (LFMs), benchmarked against LSTM and Transformer architecture. The fractal-AIMAS synergy paradigm is capable of exceeding 100 % admissibility of high-fidelity neuro-cybernetics in both performance and optimality.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"24 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.117393","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel framework for modeling conscious states by integrating fractal decomposition theory with Autonomous Intelligent Multi-Agent Systems (AIMAS) in brain-cyborg interfaces. The approach employs multifractal analysis (including Hausdorff dimension and MF-DFA) and Iterated Function Systems (IFS) to decompose hybrid neuro-silical architectures into scale-invariant components, revealing hierarchical and self-similar patterns in functional connectivity. Within the AIMAS architecture, consciousness is conceptualized as a self-organizing fractal attractor, where agents act as fractal feature extractors, coupled via Kuramoto oscillators over scale-free Koch networks. The system dynamics are modeled using stochastic partial differential equations (SPDEs), while distinct conscious states (e.g., wakefulness vs. anesthesia) are characterized using Lyapunov exponents and lacunarity-based strange attractors. Experimental validation is conducted using ECoG and neuroprosthetic datasets, along with synthetic Local Field Models (LFMs), benchmarked against LSTM and Transformer architecture. The fractal-AIMAS synergy paradigm is capable of exceeding 100 % admissibility of high-fidelity neuro-cybernetics in both performance and optimality.
神经控制系统中多尺度意识建模的分形- aimas协同作用:多重分形、Kuramoto振荡器和混合神经假体方法
将分形分解理论与自主智能多主体系统(AIMAS)相结合,提出了一种新的脑-机器人界面意识状态建模框架。该方法采用多重分形分析(包括Hausdorff维数和MF-DFA)和迭代函数系统(IFS)将混合神经硅结构分解为尺度不变的组件,揭示功能连接中的层次和自相似模式。在AIMAS架构中,意识被概念化为自组织分形吸引子,其中代理充当分形特征提取器,通过无标度Koch网络上的Kuramoto振荡器耦合。系统动力学使用随机偏微分方程(SPDEs)建模,而不同的意识状态(例如,清醒与麻醉)使用李雅普诺夫指数和基于空洞的奇异吸引子来表征。实验验证使用ECoG和神经假肢数据集,以及合成的局部场模型(lfm),以LSTM和Transformer架构为基准。分形- aimas协同范式在性能和最优性方面都能够超过高保真神经控制论的100%可接受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信