Finely Tunable Thermal Expansion of NiTi by Stress-Induced Martensitic Transformation and Thermomechanical Training

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Won Seok Choi, Won-Seok Ko, Yejun Park, Edward L. Pang, Jong-Hoon Park, Hye-Hyun Ahn, Yuji Ikeda, Pyuck-Pa Choi, Blazej Grabowski
{"title":"Finely Tunable Thermal Expansion of NiTi by Stress-Induced Martensitic Transformation and Thermomechanical Training","authors":"Won Seok Choi, Won-Seok Ko, Yejun Park, Edward L. Pang, Jong-Hoon Park, Hye-Hyun Ahn, Yuji Ikeda, Pyuck-Pa Choi, Blazej Grabowski","doi":"10.1016/j.actamat.2025.121623","DOIUrl":null,"url":null,"abstract":"Tailoring the thermal expansion of martensitic materials by crystallographic texture and anisotropic variation of lattice parameters is a promising route to the flexible design of thermally stable systems. NiTi alloys are prototype materials in this respect, exhibiting shape-memory and superelastic properties owing to their thermoelastic martensitic transformations. Here, we propose a method to realize finely tunable coefficients of thermal expansion (CTE) for the NiTi alloy based on a special combination of mechanical and thermal training. We achieve a near-zero in-plane CTE smaller than that of the FeNi-based Invar alloy. Atomistic simulations and theoretical calculations guide the method design and clarify the underlying mechanisms of the relationship between the processing conditions, the microstructural evolution, and the thermal expansion behavior. The directions for further, finer adjustments of the CTE without constraints on the shape of the materials are indicated.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"105 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121623","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tailoring the thermal expansion of martensitic materials by crystallographic texture and anisotropic variation of lattice parameters is a promising route to the flexible design of thermally stable systems. NiTi alloys are prototype materials in this respect, exhibiting shape-memory and superelastic properties owing to their thermoelastic martensitic transformations. Here, we propose a method to realize finely tunable coefficients of thermal expansion (CTE) for the NiTi alloy based on a special combination of mechanical and thermal training. We achieve a near-zero in-plane CTE smaller than that of the FeNi-based Invar alloy. Atomistic simulations and theoretical calculations guide the method design and clarify the underlying mechanisms of the relationship between the processing conditions, the microstructural evolution, and the thermal expansion behavior. The directions for further, finer adjustments of the CTE without constraints on the shape of the materials are indicated.

Abstract Image

应力诱导马氏体相变和热机械训练的NiTi精细可调热膨胀
通过晶体织构和晶格参数的各向异性变化来调整马氏体材料的热膨胀是实现热稳定体系柔性设计的一条有前途的途径。NiTi合金是这方面的原型材料,由于其热弹性马氏体转变而表现出形状记忆和超弹性性能。在此,我们提出了一种基于机械和热训练相结合的方法来实现NiTi合金热膨胀系数的精细可调。我们实现了比feni基Invar合金更小的近零面内CTE。原子模拟和理论计算指导了方法设计,并阐明了加工条件、微观组织演变和热膨胀行为之间关系的潜在机制。指出了在不受材料形状限制的情况下进一步微调CTE的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信