A Two-Dimensional Electron Gas at the Sulfurized SrTiO3 Interface

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jiacheng Huang, Linhao Cheng, Jianjie Li, Ting Lin, Tianlin Zhou, Jing Chen, Yuchen Zhao, Minghang Li, Wenxiao Shi, Qinghua Zhang, Jie Su, Yunzhong Chen
{"title":"A Two-Dimensional Electron Gas at the Sulfurized SrTiO3 Interface","authors":"Jiacheng Huang, Linhao Cheng, Jianjie Li, Ting Lin, Tianlin Zhou, Jing Chen, Yuchen Zhao, Minghang Li, Wenxiao Shi, Qinghua Zhang, Jie Su, Yunzhong Chen","doi":"10.1021/acs.jpcc.5c04680","DOIUrl":null,"url":null,"abstract":"Sulfurization is a promising anion dopant method for synthesizing new multifunctional materials from functional oxides. Unlike traditional doping approaches that modify cation sites, the anion-site doping by substituting oxygen with sulfur in oxides expands the scope of doping strategies and achieves significant control over functionalities. In this work, we created two-dimensional electron gas at the interface between disordered yttria-stabilized zirconia (YSZ) and sulfurized SrTiO<sub>3</sub> substrates. Under the mobility-optimized conditions, substrate sulfurization enhanced the Rashba spin–orbit field and electron mobility of the interfacial 2DEG by 45 and 77%, respectively. To our knowledge, this work provides the first experimental demonstration of a 2DEG in SrTiO<sub>3</sub>-based oxysulfides, validating anion-site doping as a viable route for oxide interface engineering.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"34 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c04680","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfurization is a promising anion dopant method for synthesizing new multifunctional materials from functional oxides. Unlike traditional doping approaches that modify cation sites, the anion-site doping by substituting oxygen with sulfur in oxides expands the scope of doping strategies and achieves significant control over functionalities. In this work, we created two-dimensional electron gas at the interface between disordered yttria-stabilized zirconia (YSZ) and sulfurized SrTiO3 substrates. Under the mobility-optimized conditions, substrate sulfurization enhanced the Rashba spin–orbit field and electron mobility of the interfacial 2DEG by 45 and 77%, respectively. To our knowledge, this work provides the first experimental demonstration of a 2DEG in SrTiO3-based oxysulfides, validating anion-site doping as a viable route for oxide interface engineering.

Abstract Image

硫化SrTiO3界面上的二维电子气体
硫化是一种很有前途的阴离子掺杂方法,可以从功能氧化物中合成新型多功能材料。与传统的修饰阳离子位的掺杂方法不同,通过在氧化物中用硫取代氧的阴离子掺杂扩大了掺杂策略的范围,并实现了对功能的显著控制。在这项工作中,我们在无序氧化钇稳定氧化锆(YSZ)和硫化SrTiO3衬底之间的界面上创造了二维电子气体。在迁移率优化条件下,衬底硫化使界面2DEG的Rashba自旋轨道场和电子迁移率分别提高了45%和77%。据我们所知,这项工作首次在srtio3基氧化硫化物中提供了2DEG的实验证明,验证了阴离子掺杂是氧化物界面工程的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信