Jessica J Pourian, Ben Michaels, Anh Vo, A Jay Holmgren, Augusto Garcia-Agundez, Valerie Flaherman
{"title":"A SNAPpy use of large language models: using large language models to classify treatment plans in pediatric acute otitis media.","authors":"Jessica J Pourian, Ben Michaels, Anh Vo, A Jay Holmgren, Augusto Garcia-Agundez, Valerie Flaherman","doi":"10.1093/jamia/ocaf170","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and significance: </strong>Acute otitis media (AOM) is a leading cause of pediatric antibiotic overuse. Safety Net Antibiotic Prescriptions (SNAPs) are recommended for antibiotic stewardship but are difficult to identify due to lack of structured documentation.</p><p><strong>Objective: </strong>This study validates the accuracy of Versa, a GPT-4o based HIPAA-compliant large language model (LLM), to classify AOM treatment plans from physician notes.</p><p><strong>Methods: </strong>A retrospective cross-sectional study analyzed pediatric AOM encounters. Multiple prompting strategies were used to classify treatment plans and validated against a representative sample of manual reviews by 2 pediatricians. A locally fine-tuned model, Clinical-Longformer was also trained and tested against Versa and human review.</p><p><strong>Results: </strong>In total, 5707 encounters were included; 374 reviewed manually. Zero-shot accuracy was 97.8%; few-shot accuracy was 85%. Clinical-Longformer achieved 93.3% accuracy.</p><p><strong>Conclusion: </strong>Versa effectively identifies AOM treatment plans, providing a cost-efficient quality improvement tracking tool for prescription practice patterns in pediatric antibiotic stewardship efforts.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf170","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and significance: Acute otitis media (AOM) is a leading cause of pediatric antibiotic overuse. Safety Net Antibiotic Prescriptions (SNAPs) are recommended for antibiotic stewardship but are difficult to identify due to lack of structured documentation.
Objective: This study validates the accuracy of Versa, a GPT-4o based HIPAA-compliant large language model (LLM), to classify AOM treatment plans from physician notes.
Methods: A retrospective cross-sectional study analyzed pediatric AOM encounters. Multiple prompting strategies were used to classify treatment plans and validated against a representative sample of manual reviews by 2 pediatricians. A locally fine-tuned model, Clinical-Longformer was also trained and tested against Versa and human review.
Results: In total, 5707 encounters were included; 374 reviewed manually. Zero-shot accuracy was 97.8%; few-shot accuracy was 85%. Clinical-Longformer achieved 93.3% accuracy.
Conclusion: Versa effectively identifies AOM treatment plans, providing a cost-efficient quality improvement tracking tool for prescription practice patterns in pediatric antibiotic stewardship efforts.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.