Optimizing hip exoskeleton assistance pattern based on machine learning and simulation algorithms: a personalized approach to metabolic cost reduction.

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-09-24 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1669600
Arash Mohammadzadeh Gonabadi, Iraklis I Pipinos, Sara A Myers, Farahnaz Fallahtafti
{"title":"Optimizing hip exoskeleton assistance pattern based on machine learning and simulation algorithms: a personalized approach to metabolic cost reduction.","authors":"Arash Mohammadzadeh Gonabadi, Iraklis I Pipinos, Sara A Myers, Farahnaz Fallahtafti","doi":"10.3389/frobt.2025.1669600","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hip exoskeletons can lower the metabolic cost of walking in many tasks and populations, but their assistance patterns must be tailored to each user. We developed a simulation-based, human-in-the-loop (HIL) optimization framework combining machine learning (ML) and global optimization to personalize hip exoskeleton assistance patterns.</p><p><strong>Methods: </strong>Using data from ten healthy adults, we trained a Gradient Boosting (GB) surrogate model to predict normalized metabolic cost as a function of Peak Magnitude and End Timing of assistive torque. GB achieved the lowest relative absolute error percentage (RAEP) of 0.66%, outperforming Random Forest (RAEP = 0.83%) and Support Vector Regression (RAEP = 0.98%) among nine ML models. We then evaluated seven optimization algorithms, including Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimization, Exploitative Bayesian Optimization, Cross-Entropy, Genetic Algorithm, Gravitational Search Algorithm (GSA), and Particle Swarm Optimization (PSO), to identify optimal assistance profiles.</p><p><strong>Results: </strong>GSA predicted the lowest metabolic cost (-1.06), equivalent to an estimated 53% reduction relative to no exoskeleton assistance, while PSO showed the highest efficiency (AUC = 0.24).</p><p><strong>Discussion: </strong>These simulated predictions, though not empirical measurements, demonstrate the framework's ability to streamline algorithm selection, reduce experimental burden, and accelerate translation of exoskeleton optimization into rehabilitation, occupational, and performance enhancement applications with broader biomechanical and clinical impact.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1669600"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1669600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Hip exoskeletons can lower the metabolic cost of walking in many tasks and populations, but their assistance patterns must be tailored to each user. We developed a simulation-based, human-in-the-loop (HIL) optimization framework combining machine learning (ML) and global optimization to personalize hip exoskeleton assistance patterns.

Methods: Using data from ten healthy adults, we trained a Gradient Boosting (GB) surrogate model to predict normalized metabolic cost as a function of Peak Magnitude and End Timing of assistive torque. GB achieved the lowest relative absolute error percentage (RAEP) of 0.66%, outperforming Random Forest (RAEP = 0.83%) and Support Vector Regression (RAEP = 0.98%) among nine ML models. We then evaluated seven optimization algorithms, including Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimization, Exploitative Bayesian Optimization, Cross-Entropy, Genetic Algorithm, Gravitational Search Algorithm (GSA), and Particle Swarm Optimization (PSO), to identify optimal assistance profiles.

Results: GSA predicted the lowest metabolic cost (-1.06), equivalent to an estimated 53% reduction relative to no exoskeleton assistance, while PSO showed the highest efficiency (AUC = 0.24).

Discussion: These simulated predictions, though not empirical measurements, demonstrate the framework's ability to streamline algorithm selection, reduce experimental burden, and accelerate translation of exoskeleton optimization into rehabilitation, occupational, and performance enhancement applications with broader biomechanical and clinical impact.

Abstract Image

Abstract Image

Abstract Image

基于机器学习和仿真算法的髋关节外骨骼辅助模式优化:降低代谢成本的个性化方法。
导言:髋关节外骨骼可以降低许多任务和人群中行走的代谢成本,但它们的辅助模式必须针对每个用户量身定制。我们开发了一个基于模拟的人在环(HIL)优化框架,结合机器学习(ML)和全局优化来个性化髋关节外骨骼辅助模式。方法:使用10名健康成年人的数据,我们训练了一个梯度增强(GB)替代模型,以预测标准化代谢成本作为辅助扭矩峰值大小和结束时间的函数。在9个ML模型中,GB模型的相对绝对错误率(RAEP)最低,为0.66%,优于随机森林模型(RAEP = 0.83%)和支持向量回归模型(RAEP = 0.98%)。然后,我们评估了7种优化算法,包括协方差矩阵自适应进化策略、贝叶斯优化、利用贝叶斯优化、交叉熵、遗传算法、重力搜索算法(GSA)和粒子群优化(PSO),以确定最优的辅助剖面。结果:GSA预测最低的代谢成本(-1.06),相当于相对于没有外骨骼辅助估计减少53%,而PSO显示最高的效率(AUC = 0.24)。讨论:这些模拟预测,虽然不是经验测量,但证明了框架简化算法选择,减轻实验负担,加速外骨骼优化转化为康复,职业和性能增强应用的能力,具有更广泛的生物力学和临床影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信