Givenness hierarchy theoretic sequencing of robot task instructions.

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-09-24 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1640535
Zhao Han, Daniel Hammer, Kevin Spevak, Mark Higger, Aaron Fanganello, Neil T Dantam, Tom Williams
{"title":"Givenness hierarchy theoretic sequencing of robot task instructions.","authors":"Zhao Han, Daniel Hammer, Kevin Spevak, Mark Higger, Aaron Fanganello, Neil T Dantam, Tom Williams","doi":"10.3389/frobt.2025.1640535","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>When collaborative robots teach human teammates new tasks, they must carefully determine the order to explain different parts of the task. In robotics, this problem is especially challenging, due to the situated and dynamic nature of robot task instruction.</p><p><strong>Method: </strong>In this work, we consider how robots can leverage the Givenness Hierarchy to \"think ahead\" about the objects they must refer to so that they can sequence object references to form a coherent, easy-to-follow series of instructions.</p><p><strong>Results and discussion: </strong>Our experimental results (n = 82) show that robots using this GH-informed planner generate instructions that are more natural, fluent, understandable, and intelligent, less workload demanding, and that can be more efficiently completed.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1640535"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1640535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: When collaborative robots teach human teammates new tasks, they must carefully determine the order to explain different parts of the task. In robotics, this problem is especially challenging, due to the situated and dynamic nature of robot task instruction.

Method: In this work, we consider how robots can leverage the Givenness Hierarchy to "think ahead" about the objects they must refer to so that they can sequence object references to form a coherent, easy-to-follow series of instructions.

Results and discussion: Our experimental results (n = 82) show that robots using this GH-informed planner generate instructions that are more natural, fluent, understandable, and intelligent, less workload demanding, and that can be more efficiently completed.

Abstract Image

Abstract Image

Abstract Image

机器人任务指令的给定层次理论排序。
导读:当协作机器人教授人类队友新任务时,它们必须仔细确定解释任务不同部分的顺序。在机器人技术中,由于机器人任务指令的位置和动态特性,这个问题尤其具有挑战性。方法:在这项工作中,我们考虑机器人如何利用给定层次来“提前思考”它们必须参考的对象,以便它们可以对对象引用进行排序,以形成一个连贯的,易于遵循的一系列指令。结果和讨论:我们的实验结果(n = 82)表明,使用这种gh通知规划器的机器人生成的指令更自然、流畅、可理解和智能,工作量要求更少,并且可以更有效地完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信