Jie Liu , Wenjun Xu , Bingbing Xia , Yanfei He , Shiping Huang , Jun Zhao
{"title":"Secretory expression and fermentation optimization of recombinant porcine epidermal growth factor in Saccharomyces cerevisiae","authors":"Jie Liu , Wenjun Xu , Bingbing Xia , Yanfei He , Shiping Huang , Jun Zhao","doi":"10.1016/j.pep.2025.106827","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine epidermal growth factor (PoEGF) promotes intestinal epithelial development and enhances immune function in weaned piglets, offering potential as an alternative to in-feed antibiotics. However, large-scale application of recombinant PoEGF (rPoEGF) is hindered by high production costs and complex purification requirements. In this study, we constructed a recombinant <em>Saccharomyces cerevisiae</em> INVSc1 strain capable of expressing and secreting rPoEGF through the integration of an α-factor signal peptide-PoEGF-6 × His expression cassette. Expression was confirmed by SDS-PAGE and Western blot analysis, and bioactivity was validated using a BALB/c 3T3 fibroblast proliferation assay, yielding a maximum mitogenic activity of 10,963 U/mL. To improve production efficiency, a two-stage fermentation strategy was developed and optimized in a 4-L bioreactor. The process consisted of a glucose-based fed-batch growth phase followed by galactose-induced expression under optimized conditions (25 °C, pH 5.0, DO 30 %). This approach enabled high-cell-density cultivation (OD<sub>600</sub> ≈ 71.5) and achieved a final secreted protein yield of 30.2 mg/L. Notably, the culture containing active rPoEGF could be directly applied as a functional feed additive without the need for downstream purification. These results provide a practical, scalable, and cost-effective approach for producing bioactive rPoEGF and support its future application in swine production as a safe, antibiotic-free growth promoter.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"237 ","pages":"Article 106827"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104659282500169X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine epidermal growth factor (PoEGF) promotes intestinal epithelial development and enhances immune function in weaned piglets, offering potential as an alternative to in-feed antibiotics. However, large-scale application of recombinant PoEGF (rPoEGF) is hindered by high production costs and complex purification requirements. In this study, we constructed a recombinant Saccharomyces cerevisiae INVSc1 strain capable of expressing and secreting rPoEGF through the integration of an α-factor signal peptide-PoEGF-6 × His expression cassette. Expression was confirmed by SDS-PAGE and Western blot analysis, and bioactivity was validated using a BALB/c 3T3 fibroblast proliferation assay, yielding a maximum mitogenic activity of 10,963 U/mL. To improve production efficiency, a two-stage fermentation strategy was developed and optimized in a 4-L bioreactor. The process consisted of a glucose-based fed-batch growth phase followed by galactose-induced expression under optimized conditions (25 °C, pH 5.0, DO 30 %). This approach enabled high-cell-density cultivation (OD600 ≈ 71.5) and achieved a final secreted protein yield of 30.2 mg/L. Notably, the culture containing active rPoEGF could be directly applied as a functional feed additive without the need for downstream purification. These results provide a practical, scalable, and cost-effective approach for producing bioactive rPoEGF and support its future application in swine production as a safe, antibiotic-free growth promoter.
期刊介绍:
Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.