{"title":"Multi-feature machine learning for enhanced drug–drug interaction prediction","authors":"Qiuyang Feng , Xiao Huang","doi":"10.1016/j.jbi.2025.104923","DOIUrl":null,"url":null,"abstract":"<div><div>Drug–drug interactions are a major concern in healthcare, as concurrent drug use can cause severe adverse effects. Existing machine learning methods often neglect data imbalance and DDI directionality, limiting clinical reliability. To overcome these issues, we employed GPT-4o Large Language Model to convert free-text DDI descriptions into structured triplets for directionality analysis and applied SMOTE to alleviate class imbalance. Using four key drug features (molecular fingerprints, enzymes, pathways, targets), our Deep Neural Networks (DNN) achieved 88.9% accuracy and showed an average AUPR gain of 0.68 for minority classes attributable to SMOTE. By applying attention-based feature importance analysis, we demonstrated that the most influential feature in the DNN model was supported by pharmacological evidence. These results demonstrate the effectiveness of our framework for accurate and robust DDI prediction. The source code and data are available at <span><span>https://github.com/FrankFengF/Drug-drug-interaction-prediction-</span><svg><path></path></svg></span></div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"171 ","pages":"Article 104923"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425001522","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Drug–drug interactions are a major concern in healthcare, as concurrent drug use can cause severe adverse effects. Existing machine learning methods often neglect data imbalance and DDI directionality, limiting clinical reliability. To overcome these issues, we employed GPT-4o Large Language Model to convert free-text DDI descriptions into structured triplets for directionality analysis and applied SMOTE to alleviate class imbalance. Using four key drug features (molecular fingerprints, enzymes, pathways, targets), our Deep Neural Networks (DNN) achieved 88.9% accuracy and showed an average AUPR gain of 0.68 for minority classes attributable to SMOTE. By applying attention-based feature importance analysis, we demonstrated that the most influential feature in the DNN model was supported by pharmacological evidence. These results demonstrate the effectiveness of our framework for accurate and robust DDI prediction. The source code and data are available at https://github.com/FrankFengF/Drug-drug-interaction-prediction-
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.