Meiying Cai, Na Lin, Hailong Huang, Wenqiang You, Nan Guo, Liangpu Xu
{"title":"Intrauterine phenotype, genetic analysis, and pregnancy follow-up of fetuses with the 16p12.2 microdeletion.","authors":"Meiying Cai, Na Lin, Hailong Huang, Wenqiang You, Nan Guo, Liangpu Xu","doi":"10.3389/fgene.2025.1595399","DOIUrl":null,"url":null,"abstract":"<p><p>Reports on the intrauterine phenotype of the 16p12.2 microdeletion are few. A retrospective analysis of the clinical data, genetic testing results, and neonatal prognoses of fetuses with the 16p12.2 microdeletion was conducted to provide a basis for their clinical management. The research participants were pregnant women who underwent prenatal diagnoses between November 2016 and June 2024. Among them, 12,000 cases were selected for karyotype analyses and single-nucleotide polymorphism (SNP) array testing. In the SNP array, 13 out of 12,000 fetuses (0.1%) had the 16p12.2 microdeletion, which included 6 cases of distal deletions and 7 of proximal deletions, involving fragment sizes ranging from 511 to 994 kb. The 16p12.2 distal deletion mainly involves the <i>OTOA</i> gene, whereas the 16p12.2 proximal deletion mainly involves the <i>EEF2K</i> and <i>CDR2</i> genes. Among the 13 fetuses, five exhibited intrauterine phenotypes, including a small biparietal diameter, head circumference cerebellar dysplasia, corpus callosum dysplasia, small abdominal circumference, mild ventriculomegaly, left ventricular hyperechoic foci, small kidney measurements, nasal bone dysplasia, and polyhydramnios. The inheritance testing of six cases revealed that one case was <i>de novo</i> and five were inherited from the father/mother with normal phenotypes. Except for one case of early abortion, two cases of fetal ultrasound abnormality-led terminations, and one of adverse pregnancy history-based termination, the remaining nine cases included full-term delivery and no significant abnormalities in the birth conditions. One case was lost at follow-up during a phone call 6 months after birth, and the remaining eight infants did not show any significant abnormalities during follow-up. The SNP array effectively diagnosed the 16p12.2 microdeletion, recognized its range and associated genes, and improved the prenatal diagnoses. Thirteen 16p12.2 microdeletion-carrying fetuses lacked intrauterine-specific phenotypes, and eight showed no abnormalities during the most recent postnatal follow-up. However, considering delays in the children's hearing and neurological development, it is important to conduct continuous and regular post-birth follow-ups. When 16p12.2 deletions are inherited or restricted to distal regions, they often exhibit reduced penetrance. This underscores the need for cautious interpretations of prenatal genetic data.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1595399"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12504072/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1595399","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Reports on the intrauterine phenotype of the 16p12.2 microdeletion are few. A retrospective analysis of the clinical data, genetic testing results, and neonatal prognoses of fetuses with the 16p12.2 microdeletion was conducted to provide a basis for their clinical management. The research participants were pregnant women who underwent prenatal diagnoses between November 2016 and June 2024. Among them, 12,000 cases were selected for karyotype analyses and single-nucleotide polymorphism (SNP) array testing. In the SNP array, 13 out of 12,000 fetuses (0.1%) had the 16p12.2 microdeletion, which included 6 cases of distal deletions and 7 of proximal deletions, involving fragment sizes ranging from 511 to 994 kb. The 16p12.2 distal deletion mainly involves the OTOA gene, whereas the 16p12.2 proximal deletion mainly involves the EEF2K and CDR2 genes. Among the 13 fetuses, five exhibited intrauterine phenotypes, including a small biparietal diameter, head circumference cerebellar dysplasia, corpus callosum dysplasia, small abdominal circumference, mild ventriculomegaly, left ventricular hyperechoic foci, small kidney measurements, nasal bone dysplasia, and polyhydramnios. The inheritance testing of six cases revealed that one case was de novo and five were inherited from the father/mother with normal phenotypes. Except for one case of early abortion, two cases of fetal ultrasound abnormality-led terminations, and one of adverse pregnancy history-based termination, the remaining nine cases included full-term delivery and no significant abnormalities in the birth conditions. One case was lost at follow-up during a phone call 6 months after birth, and the remaining eight infants did not show any significant abnormalities during follow-up. The SNP array effectively diagnosed the 16p12.2 microdeletion, recognized its range and associated genes, and improved the prenatal diagnoses. Thirteen 16p12.2 microdeletion-carrying fetuses lacked intrauterine-specific phenotypes, and eight showed no abnormalities during the most recent postnatal follow-up. However, considering delays in the children's hearing and neurological development, it is important to conduct continuous and regular post-birth follow-ups. When 16p12.2 deletions are inherited or restricted to distal regions, they often exhibit reduced penetrance. This underscores the need for cautious interpretations of prenatal genetic data.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.