Yumei Gong, Marc Leon, Huaqing Mo, Premkamol Pengpaeng, Hai Yang, Yanxi Lu, Zhiqiang Yin, Alan Benard, Yong Zhou, Robert Grützmann, Christian Pilarsky
{"title":"CRISPR-Cas9 screening reveals G2E3 as a novel ubiquitin-linked factor controlling autophagosome-lysosome fusion and cancer cell progression.","authors":"Yumei Gong, Marc Leon, Huaqing Mo, Premkamol Pengpaeng, Hai Yang, Yanxi Lu, Zhiqiang Yin, Alan Benard, Yong Zhou, Robert Grützmann, Christian Pilarsky","doi":"10.1038/s41420-025-02717-0","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a tightly regulated process essential for cellular homeostasis, with ubiquitination playing a crucial role in its regulation. However, the specific ubiquitin related factors involved in autophagic flux remain largely unexplored. Identifying these regulators is essential for advancing the mechanistic understanding of autophagy and its broader implications in cellular function. This study aimed to identify novel ubiquitination-associated regulators of autophagy. To achieve this, we conducted a CRISPR-Cas9 loss-of-function screen targeting 660 ubiquitination-related genes in pancreatic cancer cells expressing the mCherry-GFP-LC3 autophagy flux reporter system. Among the top candidates, we identified G2E3, a G2/M-phase-specific E3 ubiquitin ligase, as a previously unrecognized autophagy regulator. Subsequent functional analyses revealed that G2E3 knock out led to a significant accumulation of LC3B-II and GABARAPs, indicative of impaired autophagic flux. Further confocal imaging demonstrated that the co-localization of LC3B with LAMP1-positive lysosomes was significantly reduced in G2E3 knock out cells, suggesting defective autophagosome-lysosome fusion. Mechanistically, G2E3 directly interacts with GABARAP and GABARAPL1, but not LC3B, positioning it as a key regulator of late-stage autophagy. Additionally, G2E3 knock out cells exhibited reduction in migration and invasion capability, suggesting its role in cancer progression. These findings establish G2E3 as a novel ubiquitin-related regulator of autophagy, specifically facilitating autophagosome-lysosome fusion via a GABARAPs-dependent mechanism. This study reveals a previously unrecognized role of G2E3 in late-stage autophagy and suggests that targeting G2E3 could provide a potential therapeutic approach for modulating autophagy-dependent cellular processes, including cancer progression.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"455"},"PeriodicalIF":7.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02717-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Autophagy is a tightly regulated process essential for cellular homeostasis, with ubiquitination playing a crucial role in its regulation. However, the specific ubiquitin related factors involved in autophagic flux remain largely unexplored. Identifying these regulators is essential for advancing the mechanistic understanding of autophagy and its broader implications in cellular function. This study aimed to identify novel ubiquitination-associated regulators of autophagy. To achieve this, we conducted a CRISPR-Cas9 loss-of-function screen targeting 660 ubiquitination-related genes in pancreatic cancer cells expressing the mCherry-GFP-LC3 autophagy flux reporter system. Among the top candidates, we identified G2E3, a G2/M-phase-specific E3 ubiquitin ligase, as a previously unrecognized autophagy regulator. Subsequent functional analyses revealed that G2E3 knock out led to a significant accumulation of LC3B-II and GABARAPs, indicative of impaired autophagic flux. Further confocal imaging demonstrated that the co-localization of LC3B with LAMP1-positive lysosomes was significantly reduced in G2E3 knock out cells, suggesting defective autophagosome-lysosome fusion. Mechanistically, G2E3 directly interacts with GABARAP and GABARAPL1, but not LC3B, positioning it as a key regulator of late-stage autophagy. Additionally, G2E3 knock out cells exhibited reduction in migration and invasion capability, suggesting its role in cancer progression. These findings establish G2E3 as a novel ubiquitin-related regulator of autophagy, specifically facilitating autophagosome-lysosome fusion via a GABARAPs-dependent mechanism. This study reveals a previously unrecognized role of G2E3 in late-stage autophagy and suggests that targeting G2E3 could provide a potential therapeutic approach for modulating autophagy-dependent cellular processes, including cancer progression.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.