{"title":"Alpha-to-beta cell crosstalk: Adaptive mechanisms shaping islet function.","authors":"Philip Tröster, Montse Visa, Per-Olof Berggren","doi":"10.1016/j.jbior.2025.101121","DOIUrl":null,"url":null,"abstract":"<p><p>The pancreatic islet, historically described as a binary system of insulin-secreting beta cells and glucagon-secreting alpha cells, is increasingly recognized as a complex paracrine network contributing to glucose homeostasis. Alpha-to-beta cell communication is not merely modulatory but a decisive mechanism sustaining islet function under metabolic stress. Alpha cell distribution, structural specializations at the alpha-beta interface, and adaptations in signaling pathways collectively shape glycemic set points and beta cell resilience. Recent studies highlight the context-dependent nature of this intra-islet crosstalk. Visa et al. demonstrated that prediabetic stress in Western diet-fed mice remodels islet cytoarchitecture in a sex-dependent manner, enhancing alpha-to-beta signaling and Ca<sup>2+</sup> dynamics, and thereby preserving insulin secretion more effectively in females than in males. Experiments using a glucagon receptor antagonist in human islets confirmed that glucagon paracrine signaling is essential for this adaptive enhancement, particularly the increased Ca<sup>2+</sup> dynamics in female islets under high metabolic demand. Mechanistic studies further revealed that the GLP-1 receptor forms specialized nanodomains at the alpha-beta junction that undergo pre-internalization, priming beta cells for rapid Ca<sup>2+</sup> influx and heightened metabolic responsiveness. Collectively, these findings highlight intra-islet communication as a critical determinant of adaptation or failure in diabetes progression. However, conflicting evidence from beta cell-only islets, which display enhanced glucose-stimulated insulin secretion, together with reports that long-term exposure to the GLP-1 analog liraglutide can compromise beta cell function, presents a paradox that challenges current models of intra-islet regulation. Understanding these nuances is crucial for translating intra-islet signaling into targeted therapeutic strategies and regenerative tissue engineering.</p>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":" ","pages":"101121"},"PeriodicalIF":2.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbior.2025.101121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The pancreatic islet, historically described as a binary system of insulin-secreting beta cells and glucagon-secreting alpha cells, is increasingly recognized as a complex paracrine network contributing to glucose homeostasis. Alpha-to-beta cell communication is not merely modulatory but a decisive mechanism sustaining islet function under metabolic stress. Alpha cell distribution, structural specializations at the alpha-beta interface, and adaptations in signaling pathways collectively shape glycemic set points and beta cell resilience. Recent studies highlight the context-dependent nature of this intra-islet crosstalk. Visa et al. demonstrated that prediabetic stress in Western diet-fed mice remodels islet cytoarchitecture in a sex-dependent manner, enhancing alpha-to-beta signaling and Ca2+ dynamics, and thereby preserving insulin secretion more effectively in females than in males. Experiments using a glucagon receptor antagonist in human islets confirmed that glucagon paracrine signaling is essential for this adaptive enhancement, particularly the increased Ca2+ dynamics in female islets under high metabolic demand. Mechanistic studies further revealed that the GLP-1 receptor forms specialized nanodomains at the alpha-beta junction that undergo pre-internalization, priming beta cells for rapid Ca2+ influx and heightened metabolic responsiveness. Collectively, these findings highlight intra-islet communication as a critical determinant of adaptation or failure in diabetes progression. However, conflicting evidence from beta cell-only islets, which display enhanced glucose-stimulated insulin secretion, together with reports that long-term exposure to the GLP-1 analog liraglutide can compromise beta cell function, presents a paradox that challenges current models of intra-islet regulation. Understanding these nuances is crucial for translating intra-islet signaling into targeted therapeutic strategies and regenerative tissue engineering.