{"title":"Multi-messenger and cosmological constraints on dark matter through two-fluid neutron star modeling","authors":"Ankit Kumar, Sudhakantha Girmohanta, Hajime Sotani","doi":"10.1140/epjc/s10052-025-14849-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the impact of dark matter (DM) on neutron stars (NSs) using a two-fluid formalism that treats nuclear matter (NM) and DM as gravitationally coupled components. Employing NM equations of state spanning a wide range of stiffness and a self-interacting asymmetric fermionic DM framework, we explore the emergence of DM core- and halo-dominated structures and their observational implications. Constraints from gravitational waves (GW170817), NICER X-ray measurements (PSR J0030+0451), and pulsar mass limits (PSR J0740+6620) delineate a consistent parameter space for DM properties derived from these multi-messenger observations. DM halo-dominated configurations, while consistent with PSR J0740+6620’s mass limits and NICER’s radius measurements for PSR J0030+0451, are ruled out by the tidal deformability bounds inferred from the GW170817 event. Consequently, the combined limits inferred from the observational data of GW170817, PSR J0030+0451, and PSR J0740+6620 support the plausibility of DM core-dominated configurations. Constraints on the DM self-interaction strength from galaxy cluster dynamics further refine the DM parameter space permitted by NS observations. This work bridges multi-messenger astrophysics and cosmology, providing insights into DM interactions and their implications for NS structure, evolution, and observational signatures.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14849-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14849-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the impact of dark matter (DM) on neutron stars (NSs) using a two-fluid formalism that treats nuclear matter (NM) and DM as gravitationally coupled components. Employing NM equations of state spanning a wide range of stiffness and a self-interacting asymmetric fermionic DM framework, we explore the emergence of DM core- and halo-dominated structures and their observational implications. Constraints from gravitational waves (GW170817), NICER X-ray measurements (PSR J0030+0451), and pulsar mass limits (PSR J0740+6620) delineate a consistent parameter space for DM properties derived from these multi-messenger observations. DM halo-dominated configurations, while consistent with PSR J0740+6620’s mass limits and NICER’s radius measurements for PSR J0030+0451, are ruled out by the tidal deformability bounds inferred from the GW170817 event. Consequently, the combined limits inferred from the observational data of GW170817, PSR J0030+0451, and PSR J0740+6620 support the plausibility of DM core-dominated configurations. Constraints on the DM self-interaction strength from galaxy cluster dynamics further refine the DM parameter space permitted by NS observations. This work bridges multi-messenger astrophysics and cosmology, providing insights into DM interactions and their implications for NS structure, evolution, and observational signatures.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.