Thermodynamic law and holography dual of accelerating and rotating black hole in Nariai limit

IF 2.8 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Shu Luo
{"title":"Thermodynamic law and holography dual of accelerating and rotating black hole in Nariai limit","authors":"Shu Luo","doi":"10.1007/s10714-025-03472-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the thermodynamic law of accelerating and rotating black hole described by rotating C-metric, as well as holography properties in Nariai limit, which are related to Nariai-CFT and Kerr-CFT correspondence. In order to achieve this goal we define a regularized Komar mass with physical interpretation of varying the horizon area from spinless limit to general case, and derive the first law based on this construction through covariant phase space formalism. Serving for potential future studies, we also reduce the model to a 2-dimensional JT-type action and discuss some of its properties.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03472-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the thermodynamic law of accelerating and rotating black hole described by rotating C-metric, as well as holography properties in Nariai limit, which are related to Nariai-CFT and Kerr-CFT correspondence. In order to achieve this goal we define a regularized Komar mass with physical interpretation of varying the horizon area from spinless limit to general case, and derive the first law based on this construction through covariant phase space formalism. Serving for potential future studies, we also reduce the model to a 2-dimensional JT-type action and discuss some of its properties.

Abstract Image

Nariai极限下加速旋转黑洞的热力学定律与全息对偶
本文研究了用旋转c度规描述的加速旋转黑洞的热力学规律,以及与Nariai- cft和Kerr-CFT对应关系相关的Nariai极限下的全息性质。为了实现这一目标,我们定义了一个正则化的Komar质量,其物理解释是将视界面积从无自旋极限变化为一般情况,并在此基础上通过协变相空间形式导出了第一定律。为了将来的研究,我们还将模型简化为二维jt型作用,并讨论了它的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信