{"title":"Small energy and Hosoya index among caterpillars with a given degree sequence","authors":"Eric O. D. Andriantiana, Xhanti Sinoxolo","doi":"10.1007/s13370-025-01382-x","DOIUrl":null,"url":null,"abstract":"<div><p>The energy <i>En</i>(<i>G</i>) of a graph <i>G</i> is defined as the sum of the absolute values of its eigenvalues. The Hosoya index <i>Z</i>(<i>G</i>) of a graph <i>G</i> is the number of independent edge subsets of <i>G</i>, including the empty set. For any given degree sequence <i>D</i>, we characterize the caterpillar <span>\\(\\mathcal {S}(D)\\)</span> that has the minimum <i>Z</i> and <i>En</i>. We also show that <span>\\(Z(\\mathcal {S}(D))<Z(\\mathcal {S}(Y))\\)</span> and <span>\\(En(\\mathcal {S}(D))<En(\\mathcal {S}(Y))\\)</span> for any degree sequences <span>\\(Y=(y_1,\\dots ,y_n)\\)</span> and <span>\\(D=(d_1,\\dots ,d_n)\\)</span> with </p><div><div><span>$$\\sum _{i=1}^{n}y_i=\\sum _{i=1}^{n}d_i\\text { and }\\sum _{i=1}^{k}y_i\\le \\sum _{i=1}^{k}d_i \\text { for all }1\\le k \\le n.$$</span></div></div></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01382-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01382-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The energy En(G) of a graph G is defined as the sum of the absolute values of its eigenvalues. The Hosoya index Z(G) of a graph G is the number of independent edge subsets of G, including the empty set. For any given degree sequence D, we characterize the caterpillar \(\mathcal {S}(D)\) that has the minimum Z and En. We also show that \(Z(\mathcal {S}(D))<Z(\mathcal {S}(Y))\) and \(En(\mathcal {S}(D))<En(\mathcal {S}(Y))\) for any degree sequences \(Y=(y_1,\dots ,y_n)\) and \(D=(d_1,\dots ,d_n)\) with
$$\sum _{i=1}^{n}y_i=\sum _{i=1}^{n}d_i\text { and }\sum _{i=1}^{k}y_i\le \sum _{i=1}^{k}d_i \text { for all }1\le k \le n.$$