Prescribed Signal Concentration on the Boundary: Radial Solutions to a Chemotaxis System with Proliferation and Nonlinear Consumption

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Zhan Jiao, Irena Jadlovská, Tongxing Li
{"title":"Prescribed Signal Concentration on the Boundary: Radial Solutions to a Chemotaxis System with Proliferation and Nonlinear Consumption","authors":"Zhan Jiao,&nbsp;Irena Jadlovská,&nbsp;Tongxing Li","doi":"10.1007/s00245-025-10315-w","DOIUrl":null,"url":null,"abstract":"<div><p>The chemotaxis model </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} \\begin{aligned} &amp; u_t = \\Delta u-\\chi \\nabla \\cdot (g(u)\\nabla v)+ku-\\mu u^l, &amp; x\\in \\Omega ,\\ t&gt;0&amp; ,\\\\ &amp; v_t=\\Delta v-g(u)v, &amp; x\\in \\Omega ,\\ t&gt;0&amp; \\\\ \\end{aligned} \\end{array} \\right. \\end{aligned}$$</span></div></div><p>is considered under the boundary conditions <span>\\(\\frac{\\partial u}{\\partial \\nu }-\\chi g(u)\\frac{\\partial v}{\\partial \\nu }=0\\)</span> and <span>\\(v=v_*\\)</span> on <span>\\(\\partial \\Omega\\)</span>, where <span>\\(\\Omega \\subset {\\mathbb {R}}^n\\)</span> (<span>\\(n\\in \\{2,3\\}\\)</span>) is a ball and <span>\\(v_*\\)</span> is a given positive constant. Here, the parameters <span>\\(\\chi ,k,\\mu\\)</span> are positive and the function <span>\\(g\\in C^1([0,\\infty ))\\)</span> satisfies <span>\\(0\\le g(u)\\le u^{\\beta }\\)</span> with <span>\\(\\frac{5}{6}\\le \\beta &lt;1\\)</span>. For all suitably regular initial data, the present work provides a result on global boundedness of the radially symmetric classical solution in two dimensions when <span>\\(\\beta =\\chi\\)</span> and <span>\\(1&lt;l&lt;\\frac{5}{3}\\)</span>, while the global existence of the radially symmetric weak solution is established in three-dimensional settings.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10315-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The chemotaxis model

$$\begin{aligned} \left\{ \begin{array}{l} \begin{aligned} & u_t = \Delta u-\chi \nabla \cdot (g(u)\nabla v)+ku-\mu u^l, & x\in \Omega ,\ t>0& ,\\ & v_t=\Delta v-g(u)v, & x\in \Omega ,\ t>0& \\ \end{aligned} \end{array} \right. \end{aligned}$$

is considered under the boundary conditions \(\frac{\partial u}{\partial \nu }-\chi g(u)\frac{\partial v}{\partial \nu }=0\) and \(v=v_*\) on \(\partial \Omega\), where \(\Omega \subset {\mathbb {R}}^n\) (\(n\in \{2,3\}\)) is a ball and \(v_*\) is a given positive constant. Here, the parameters \(\chi ,k,\mu\) are positive and the function \(g\in C^1([0,\infty ))\) satisfies \(0\le g(u)\le u^{\beta }\) with \(\frac{5}{6}\le \beta <1\). For all suitably regular initial data, the present work provides a result on global boundedness of the radially symmetric classical solution in two dimensions when \(\beta =\chi\) and \(1<l<\frac{5}{3}\), while the global existence of the radially symmetric weak solution is established in three-dimensional settings.

边界上的规定信号浓度:具有扩散和非线性消耗的趋化系统的径向解
趋化模型$$\begin{aligned} \left\{ \begin{array}{l} \begin{aligned} & u_t = \Delta u-\chi \nabla \cdot (g(u)\nabla v)+ku-\mu u^l, & x\in \Omega ,\ t>0& ,\\ & v_t=\Delta v-g(u)v, & x\in \Omega ,\ t>0& \\ \end{aligned} \end{array} \right. \end{aligned}$$是在\(\partial \Omega\)的边界条件\(\frac{\partial u}{\partial \nu }-\chi g(u)\frac{\partial v}{\partial \nu }=0\)和\(v=v_*\)下考虑的,其中\(\Omega \subset {\mathbb {R}}^n\) (\(n\in \{2,3\}\))是一个球,\(v_*\)是一个给定的正常数。这里,参数\(\chi ,k,\mu\)是正的,函数\(g\in C^1([0,\infty ))\)满足\(0\le g(u)\le u^{\beta }\)与\(\frac{5}{6}\le \beta <1\)。对于所有适当规则的初始数据,本文给出了在\(\beta =\chi\)和\(1<l<\frac{5}{3}\)时二维径向对称经典解的整体有界性的结果,同时在三维环境下建立了径向对称弱解的整体存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信