Benchmarking the Ability of a Controller to Execute Quantum Error Corrected Non-Clifford Circuits

IF 4.6
Yaniv Kurman;Lior Ella;Ramon Szmuk;Oded Wertheim;Benedikt Dorschner;Sam Stanwyck;Yonatan Cohen
{"title":"Benchmarking the Ability of a Controller to Execute Quantum Error Corrected Non-Clifford Circuits","authors":"Yaniv Kurman;Lior Ella;Ramon Szmuk;Oded Wertheim;Benedikt Dorschner;Sam Stanwyck;Yonatan Cohen","doi":"10.1109/TQE.2025.3608053","DOIUrl":null,"url":null,"abstract":"Reaching fault-tolerant quantum computation relies on the successful implementation of non-Clifford circuits with quantum error correction (QEC). In QEC, quantum gates and measurements encode quantum information into an error-protected Hilbert space, while classical processing decodes the measurements into logical errors. QEC non-Clifford gates pose the greatest computation challenge from the classical controller's perspective, as they require mid-circuit decoding-dependent feed-forward—modifying the physical gate sequence based on the decoding outcome of previous measurements within the same circuit. In this work, we introduce the first benchmarks to holistically evaluate the capability of a combined controller–decoder system to run non-Clifford QEC circuits. We show that executing an error-corrected non-Clifford circuit, comprised of numerous non-Clifford gates, strictly hinges upon the classical controller–decoder system. Particularly, its ability to perform decoding-based feed-forward with low latency, defined as the time between the last measurement required for decoding and the dependent mid-circuit quantum operation. We analyze how the system's latency dictates the circuit's operational regime: latency divergence, classical-controller-limited runtime, or quantum-operation-limited runtime. Based on this understanding, we introduce latency-based benchmarks to set a standard for developing QEC control systems as the essential components of fault-tolerant quantum computation.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-14"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11153908","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153908/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reaching fault-tolerant quantum computation relies on the successful implementation of non-Clifford circuits with quantum error correction (QEC). In QEC, quantum gates and measurements encode quantum information into an error-protected Hilbert space, while classical processing decodes the measurements into logical errors. QEC non-Clifford gates pose the greatest computation challenge from the classical controller's perspective, as they require mid-circuit decoding-dependent feed-forward—modifying the physical gate sequence based on the decoding outcome of previous measurements within the same circuit. In this work, we introduce the first benchmarks to holistically evaluate the capability of a combined controller–decoder system to run non-Clifford QEC circuits. We show that executing an error-corrected non-Clifford circuit, comprised of numerous non-Clifford gates, strictly hinges upon the classical controller–decoder system. Particularly, its ability to perform decoding-based feed-forward with low latency, defined as the time between the last measurement required for decoding and the dependent mid-circuit quantum operation. We analyze how the system's latency dictates the circuit's operational regime: latency divergence, classical-controller-limited runtime, or quantum-operation-limited runtime. Based on this understanding, we introduce latency-based benchmarks to set a standard for developing QEC control systems as the essential components of fault-tolerant quantum computation.
对控制器执行量子纠错非克利福德电路的能力进行基准测试
实现容错量子计算依赖于具有量子纠错(QEC)的非clifford电路的成功实现。在QEC中,量子门和测量将量子信息编码为错误保护的希尔伯特空间,而经典处理将测量解码为逻辑错误。从经典控制器的角度来看,QEC非clifford门带来了最大的计算挑战,因为它们需要中路解码相关的前馈,根据同一电路中先前测量的解码结果修改物理门序列。在这项工作中,我们引入了第一个基准,以全面评估组合控制器-解码器系统运行非clifford QEC电路的能力。我们证明了执行由许多非克利福德门组成的纠错非克利福德电路严格依赖于经典的控制器-解码器系统。特别是,它能够以低延迟执行基于解码的前馈,定义为解码所需的最后一次测量与相关中路量子操作之间的时间。我们分析了系统的延迟如何决定电路的运行状态:延迟发散,经典控制器限制运行时间,或量子操作限制运行时间。基于这种理解,我们引入了基于延迟的基准来为开发QEC控制系统设定标准,作为容错量子计算的基本组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信