{"title":"Critical role of L21 and L12 phase in deformation behaviors of additively manufactured FeCrNiAlTi alloy","authors":"Xiaopei Wang, Yan Wang, Wu Gong, Wenhua Wu, Youyou Zhang, Stefanus Harjo, Zhigang Yang, Hao Chen","doi":"10.1016/j.ijplas.2025.104502","DOIUrl":null,"url":null,"abstract":"Precipitation hardening is a widely used strategy to enhance the strength of face-centered cubic (FCC) alloys, but it often comes at the expense of ductility. However, the precipitates may also influence the deformation behaviors of the FCC matrix, such as strain induced stacking faults and twins, which could potentially mitigate or eliminate the loss in ductility caused by the increase in strength. In this work, we fabricated an FeCrNiAlTi FCC alloy via laser additive manufacturing, in which high density incoherent L2<sub>1</sub> phase and coherent L1<sub>2</sub> phase were introduced at cell walls and within cells respectively. An excellent balance between strength and ductility was achieved at both ambient and cryogenic temperatures by controlling the precipitation of intermetallic phases. It was found that the high density precipitates not only provide substantial strengthening but also promote deformation-induced stacking faults (SFs) and twinning, thereby enhancing work hardening through the creation of strain heterogeneity. In-situ neutron diffraction results reveal that the lattice strain after the yielding of the alloy is the predominant factors governing the formation of SFs and twins. Numerical simulation results exhibit that the large interfacial misfit of the incoherent L2<sub>1</sub> phase with the FCC matrix significantly enhances the local strain. Additionally, the combination of larger size and greater spacing of the L1<sub>2</sub> phase increases the local strain. Both L2<sub>1</sub> phase and L1<sub>2</sub> phase contribute to the enlarged local strain heterogeneity, thereby enhancing the stacking fault probability and promoting the formation of nano SFs and twins. This study presents the critical role of precipitates in tailoring deformation behaviors, thereby providing a new insight for designing strong yet ductile FCC alloys via engineering high density precipitates.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"114 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104502","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Precipitation hardening is a widely used strategy to enhance the strength of face-centered cubic (FCC) alloys, but it often comes at the expense of ductility. However, the precipitates may also influence the deformation behaviors of the FCC matrix, such as strain induced stacking faults and twins, which could potentially mitigate or eliminate the loss in ductility caused by the increase in strength. In this work, we fabricated an FeCrNiAlTi FCC alloy via laser additive manufacturing, in which high density incoherent L21 phase and coherent L12 phase were introduced at cell walls and within cells respectively. An excellent balance between strength and ductility was achieved at both ambient and cryogenic temperatures by controlling the precipitation of intermetallic phases. It was found that the high density precipitates not only provide substantial strengthening but also promote deformation-induced stacking faults (SFs) and twinning, thereby enhancing work hardening through the creation of strain heterogeneity. In-situ neutron diffraction results reveal that the lattice strain after the yielding of the alloy is the predominant factors governing the formation of SFs and twins. Numerical simulation results exhibit that the large interfacial misfit of the incoherent L21 phase with the FCC matrix significantly enhances the local strain. Additionally, the combination of larger size and greater spacing of the L12 phase increases the local strain. Both L21 phase and L12 phase contribute to the enlarged local strain heterogeneity, thereby enhancing the stacking fault probability and promoting the formation of nano SFs and twins. This study presents the critical role of precipitates in tailoring deformation behaviors, thereby providing a new insight for designing strong yet ductile FCC alloys via engineering high density precipitates.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.