Brown remodeling of white adipose tissue protects against abdominal aortic aneurysm via batokine FSTL1.

IF 8.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Chunling Huang,Yuna Huang,Boshui Huang,Lei Yao,Zenghui Zhang,Luoxiao Dong,Chang Guan,Junping Li,Zhaoqi Huang,Sixu Chen,Yuan Jiang,Yuling Zhang,Jingfeng Wang,Yangxin Chen,Zhaoyu Liu
{"title":"Brown remodeling of white adipose tissue protects against abdominal aortic aneurysm via batokine FSTL1.","authors":"Chunling Huang,Yuna Huang,Boshui Huang,Lei Yao,Zenghui Zhang,Luoxiao Dong,Chang Guan,Junping Li,Zhaoqi Huang,Sixu Chen,Yuan Jiang,Yuling Zhang,Jingfeng Wang,Yangxin Chen,Zhaoyu Liu","doi":"10.1038/s44321-025-00318-z","DOIUrl":null,"url":null,"abstract":"Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without effective medical therapies. Emerging evidence have suggested a crosstalk between adipose tissue and vascular cells. Besides, brown adipose tissue is considered beneficial for cardiovascular health. Nevertheless, whether brown remodeling of white adipose tissue would protect against AAA remains unclear. Here, we showed that patients with AAA had a decreased browning level of adipose tissue, and induction of adipose tissue browning significantly reduced AAA incidence and attenuated AAA development in mice. Using LC-MS/MS and proteomic analysis, we further identified Follistatin-like 1 (FSTL1) as a novel vessel-protective adipokine secreted by browning adipocytes. Mechanistically, FSTL1 inhibited VSMC apoptosis through DIP2A/AKT signaling. Furthermore, we demonstrated that adipocyte-specific deficiency of FSTL1 abrogated the protective effect of browning induction. Moreover, supplementation of FSTL1 either systemically or patched into hydrogel placing around the abdominal aorta markedly limited aortic dilation and AAA progression. Our data suggest a protective role of adipose tissue browning and batokine FSTL1 in the development of AAA, which may represent a novel intervention strategy for AAA.","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":"29 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00318-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without effective medical therapies. Emerging evidence have suggested a crosstalk between adipose tissue and vascular cells. Besides, brown adipose tissue is considered beneficial for cardiovascular health. Nevertheless, whether brown remodeling of white adipose tissue would protect against AAA remains unclear. Here, we showed that patients with AAA had a decreased browning level of adipose tissue, and induction of adipose tissue browning significantly reduced AAA incidence and attenuated AAA development in mice. Using LC-MS/MS and proteomic analysis, we further identified Follistatin-like 1 (FSTL1) as a novel vessel-protective adipokine secreted by browning adipocytes. Mechanistically, FSTL1 inhibited VSMC apoptosis through DIP2A/AKT signaling. Furthermore, we demonstrated that adipocyte-specific deficiency of FSTL1 abrogated the protective effect of browning induction. Moreover, supplementation of FSTL1 either systemically or patched into hydrogel placing around the abdominal aorta markedly limited aortic dilation and AAA progression. Our data suggest a protective role of adipose tissue browning and batokine FSTL1 in the development of AAA, which may represent a novel intervention strategy for AAA.
白色脂肪组织的棕色重塑通过batokine FSTL1保护腹主动脉瘤。
腹主动脉瘤(AAA)是一种危及生命的血管疾病,目前尚无有效的药物治疗方法。新出现的证据表明脂肪组织和血管细胞之间存在一种串扰。此外,棕色脂肪组织被认为对心血管健康有益。然而,白色脂肪组织的棕色重塑是否能预防AAA仍不清楚。在这里,我们发现AAA患者的脂肪组织褐变水平降低,诱导脂肪组织褐变可显著降低小鼠AAA的发病率和减轻AAA的发展。通过LC-MS/MS和蛋白质组学分析,我们进一步确定了卵泡素抑制素样1 (FSTL1)是一种由褐变脂肪细胞分泌的新型血管保护脂肪因子。机制上,FSTL1通过DIP2A/AKT信号通路抑制VSMC凋亡。此外,我们证明了脂肪细胞特异性FSTL1的缺乏取消了褐变诱导的保护作用。此外,全身补充FSTL1或将FSTL1贴片到腹主动脉周围的水凝胶中,可显著限制主动脉扩张和AAA进展。我们的数据表明,脂肪组织褐变和细胞因子FSTL1在AAA的发展中具有保护作用,这可能代表了一种新的AAA干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Molecular Medicine
EMBO Molecular Medicine 医学-医学:研究与实验
CiteScore
17.70
自引率
0.90%
发文量
105
审稿时长
4-8 weeks
期刊介绍: EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance. To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields: Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention). Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease. Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信