Radiogenomics for Glioblastoma Survival Prediction: Integrating Radiomics, Clinical, and Genomic Features Using Artificial Intelligence.

Sebastian Buzdugan, Moona Mazher, Domenec Puig
{"title":"Radiogenomics for Glioblastoma Survival Prediction: Integrating Radiomics, Clinical, and Genomic Features Using Artificial Intelligence.","authors":"Sebastian Buzdugan, Moona Mazher, Domenec Puig","doi":"10.1007/s10278-025-01692-3","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) remains one of the most formidable brain malignancies, characterized by a heterogeneous genetic profile that significantly influences patient prognosis. Per the 2021 WHO central nervous system classification, GBM is defined as an isocitrate dehydrogenase (IDH) wild-type diffuse astrocytic tumor. We analyzed two multi-institutional cohorts, UPENN-GBM (644 patients) and UCSF-PDGM (420 patients); after excluding the 116 and 42 IDH-mutant records, 528 and 378 wild-type cases remained for modelling. MGMT promoter methylation, present in 43% of GBM cases, correlates with enhanced survival outcomes, demonstrating a median survival of 504 days versus 329 days in unmethylated cases. In this study, we present a novel integration of imaging phenotypes, clinical characteristics, and molecular markers through the application of advanced machine learning methodologies, including Random Forest, XGBoost, LightGBM, and an optimized dense neural network (Dense NN). This integrative approach aims to refine survival prediction in GBM patients. MRI data were meticulously processed using the MRIPreprocessor tool and the radiomics Python library, facilitating the extraction of high-dimensional radiomic features. Our findings reveal that the proposed custom Dense NN model outperformed traditional tree-based algorithms, with the Dense NN achieving a concordance index (CI) of 0.86 on the UPENN-GBM dataset and 0.83 on the UCSF-PDGM dataset. The optimized Dense NN architecture features three hidden layers with 256, 128, and 64 units respectively, employing ReLU activation, L1/L2 regularization to mitigate overfitting, batch normalization to stabilize training, and dropout for improved generalization. This specific configuration was determined through hyperparameter tuning using techniques like RandomizedSearchCV. This integrative, non-invasive methodology provides a more nuanced assessment of tumor biology, thereby advancing the development of personalized therapeutic strategies. Our results underscore the transformative potential of artificial intelligence in delineating disease trajectories and optimizing treatment paradigms. Moreover, this research establishes a robust framework for future investigations in glioblastoma survival prediction, illustrating the efficacy of combining clinical, genetic, and imaging data to enhance prognostic accuracy within precision medicine paradigms for GBM patients.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01692-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM) remains one of the most formidable brain malignancies, characterized by a heterogeneous genetic profile that significantly influences patient prognosis. Per the 2021 WHO central nervous system classification, GBM is defined as an isocitrate dehydrogenase (IDH) wild-type diffuse astrocytic tumor. We analyzed two multi-institutional cohorts, UPENN-GBM (644 patients) and UCSF-PDGM (420 patients); after excluding the 116 and 42 IDH-mutant records, 528 and 378 wild-type cases remained for modelling. MGMT promoter methylation, present in 43% of GBM cases, correlates with enhanced survival outcomes, demonstrating a median survival of 504 days versus 329 days in unmethylated cases. In this study, we present a novel integration of imaging phenotypes, clinical characteristics, and molecular markers through the application of advanced machine learning methodologies, including Random Forest, XGBoost, LightGBM, and an optimized dense neural network (Dense NN). This integrative approach aims to refine survival prediction in GBM patients. MRI data were meticulously processed using the MRIPreprocessor tool and the radiomics Python library, facilitating the extraction of high-dimensional radiomic features. Our findings reveal that the proposed custom Dense NN model outperformed traditional tree-based algorithms, with the Dense NN achieving a concordance index (CI) of 0.86 on the UPENN-GBM dataset and 0.83 on the UCSF-PDGM dataset. The optimized Dense NN architecture features three hidden layers with 256, 128, and 64 units respectively, employing ReLU activation, L1/L2 regularization to mitigate overfitting, batch normalization to stabilize training, and dropout for improved generalization. This specific configuration was determined through hyperparameter tuning using techniques like RandomizedSearchCV. This integrative, non-invasive methodology provides a more nuanced assessment of tumor biology, thereby advancing the development of personalized therapeutic strategies. Our results underscore the transformative potential of artificial intelligence in delineating disease trajectories and optimizing treatment paradigms. Moreover, this research establishes a robust framework for future investigations in glioblastoma survival prediction, illustrating the efficacy of combining clinical, genetic, and imaging data to enhance prognostic accuracy within precision medicine paradigms for GBM patients.

放射基因组学用于胶质母细胞瘤生存预测:利用人工智能整合放射组学、临床和基因组特征。
胶质母细胞瘤(GBM)仍然是最可怕的脑恶性肿瘤之一,其特点是异质性遗传谱显著影响患者预后。根据2021年WHO中枢神经系统分类,GBM被定义为异柠檬酸脱氢酶(IDH)野生型弥漫性星形细胞肿瘤。我们分析了两个多机构队列,UPENN-GBM(644例)和UCSF-PDGM(420例);在排除了116和42个idh突变记录后,还有528和378个野生型病例有待建模。MGMT启动子甲基化,存在于43%的GBM病例中,与增强的生存结果相关,显示中位生存期为504天,而未甲基化的病例为329天。在这项研究中,我们通过应用先进的机器学习方法,包括随机森林、XGBoost、LightGBM和优化的密集神经网络(dense NN),提出了一种新的整合成像表型、临床特征和分子标记的方法。这种综合方法旨在完善GBM患者的生存预测。使用MRI预处理工具和radiomics Python库对MRI数据进行了精心处理,便于提取高维放射学特征。我们的研究结果表明,所提出的自定义Dense NN模型优于传统的基于树的算法,Dense NN在UPENN-GBM数据集上的一致性指数(CI)为0.86,在UCSF-PDGM数据集上的一致性指数(CI)为0.83。优化后的Dense NN架构具有三个隐藏层,分别为256、128和64个单元,采用ReLU激活,L1/L2正则化来缓解过拟合,批处理归一化来稳定训练,以及dropout来提高泛化。这个特定的配置是通过使用RandomizedSearchCV等技术进行超参数调优确定的。这种综合的、非侵入性的方法为肿瘤生物学提供了更细致的评估,从而促进了个性化治疗策略的发展。我们的研究结果强调了人工智能在描述疾病轨迹和优化治疗范例方面的变革潜力。此外,本研究为未来胶质母细胞瘤生存预测的研究建立了一个强大的框架,说明了结合临床、遗传和影像学数据在精准医学范式下提高GBM患者预后准确性的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信