Copula-based Cox models for dependent current status data with a cure fraction.

IF 1.2 4区 数学
Shuying Wang, Danping Zhou, Yunfei Yang, Bo Zhao
{"title":"Copula-based Cox models for dependent current status data with a cure fraction.","authors":"Shuying Wang, Danping Zhou, Yunfei Yang, Bo Zhao","doi":"10.1515/ijb-2025-0038","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional survival analysis typically assumes that all subjects will eventually experience the event of interest given a sufficiently long follow-up period. Nevertheless, due to advancements in medical technology, researchers now frequently observe that some subjects never experience the event and are considered cured. Furthermore, traditional survival analysis assumes independence between failure time and censoring time. However, practical applications often reveal dependence between them. Ignoring both the cured subgroup and this dependence structure can introduce bias in model estimates. Among the methods for handling dependent censoring data, the numerical integration process of frailty models is complex and sensitive to the assumptions about the latent variable distribution. In contrast, the copula method, by flexibly modeling the dependence between variables, avoids strong assumptions about the latent variable structure, offering greater robustness and computational feasibility. Therefore, this paper proposes a copula-based method to handle dependent current status data involving a cure fraction. In the modeling process, we establish a logistic model to describe the susceptible rate and a Cox proportional hazards model to describe the failure time and censoring time. In the estimation process, we employ a sieve maximum likelihood estimation method based on Bernstein polynomials for parameter estimation. Extensive simulation experiments show that the proposed method demonstrates consistency and asymptotic efficiency under various settings. Finally, this paper applies the method to lymph follicle cell data, verifying its effectiveness in practical data analysis.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2025-0038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional survival analysis typically assumes that all subjects will eventually experience the event of interest given a sufficiently long follow-up period. Nevertheless, due to advancements in medical technology, researchers now frequently observe that some subjects never experience the event and are considered cured. Furthermore, traditional survival analysis assumes independence between failure time and censoring time. However, practical applications often reveal dependence between them. Ignoring both the cured subgroup and this dependence structure can introduce bias in model estimates. Among the methods for handling dependent censoring data, the numerical integration process of frailty models is complex and sensitive to the assumptions about the latent variable distribution. In contrast, the copula method, by flexibly modeling the dependence between variables, avoids strong assumptions about the latent variable structure, offering greater robustness and computational feasibility. Therefore, this paper proposes a copula-based method to handle dependent current status data involving a cure fraction. In the modeling process, we establish a logistic model to describe the susceptible rate and a Cox proportional hazards model to describe the failure time and censoring time. In the estimation process, we employ a sieve maximum likelihood estimation method based on Bernstein polynomials for parameter estimation. Extensive simulation experiments show that the proposed method demonstrates consistency and asymptotic efficiency under various settings. Finally, this paper applies the method to lymph follicle cell data, verifying its effectiveness in practical data analysis.

基于copula的具有固化分数的相关电流状态数据的Cox模型。
传统的生存分析通常假设,在足够长的随访期内,所有受试者最终都会经历感兴趣的事件。然而,由于医疗技术的进步,研究人员现在经常观察到一些受试者从未经历过这一事件,并被认为已经治愈。此外,传统的生存分析假设失效时间与检测时间无关。然而,实际应用往往揭示了它们之间的依赖关系。忽略治愈子群和这种依赖结构会在模型估计中引入偏差。在相关筛选数据的处理方法中,脆弱性模型的数值积分过程复杂且对潜在变量分布的假设敏感。相比之下,copula方法通过灵活地建模变量之间的相关性,避免了对潜在变量结构的强假设,具有更强的鲁棒性和计算可行性。因此,本文提出了一种基于copula的方法来处理涉及固化分数的相关电流状态数据。在建模过程中,建立了描述易感率的logistic模型和描述故障时间和审查时间的Cox比例风险模型。在估计过程中,我们采用基于Bernstein多项式的筛极大似然估计方法进行参数估计。大量的仿真实验表明,该方法在各种设置下都具有一致性和渐近效率。最后,将该方法应用于淋巴滤泡细胞数据,验证了该方法在实际数据分析中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信