An automatic approach to assess biomechanical risk using machine learning algorithms and inertial sensors.

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Giuseppe Prisco, Mario Cesarelli, Fabrizio Esposito, Antonella Santone, Paolo Gargiulo, Francesco Amato, Leandro Donisi
{"title":"An automatic approach to assess biomechanical risk using machine learning algorithms and inertial sensors.","authors":"Giuseppe Prisco, Mario Cesarelli, Fabrizio Esposito, Antonella Santone, Paolo Gargiulo, Francesco Amato, Leandro Donisi","doi":"10.1007/s13246-025-01655-6","DOIUrl":null,"url":null,"abstract":"<p><p>Work-related musculoskeletal disorders represent a significant occupational health issue. These disorders encompass a range of conditions resulting from specific risk factors associate to manual material handling such as: intensity, repetition, and duration. Over the years, several observational methodologies have been developed to assess biomechanical risk, but their limits depend mainly on clinicians' subjective assessment. For this reason, wearable sensors coupled with artificial intelligence have recently been integrated in the occupational ergonomic field. This study aimed to develop a new technological methodology-based on machine learning algorithms and inertial wearable sensors-able to automatically discriminate biomechanical risk associated with lifting loads. Ten healthy volunteers were enrolled in this study performing specific weight-lifting tasks wearing two inertial measurement units on the sternum and lumbar region. The acquired inertial signals were appropriately processed to extract several features in the time-domain and frequency-domain which have been used as input to several machine learning algorithms. Excellent results in discriminating biomechanical risk classes were obtained reaching accuracies and areas under the receiver operating characteristic curve above 86% and 95%, respectively. In addition, the sternum emerged as the most informative body landmark, while the mean absolute value was identified as the most informative feature. Future investigations on a larger study population could confirm the potential of the proposed automatic procedure to be used in the workplace in combination with well-established methodologies.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01655-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Work-related musculoskeletal disorders represent a significant occupational health issue. These disorders encompass a range of conditions resulting from specific risk factors associate to manual material handling such as: intensity, repetition, and duration. Over the years, several observational methodologies have been developed to assess biomechanical risk, but their limits depend mainly on clinicians' subjective assessment. For this reason, wearable sensors coupled with artificial intelligence have recently been integrated in the occupational ergonomic field. This study aimed to develop a new technological methodology-based on machine learning algorithms and inertial wearable sensors-able to automatically discriminate biomechanical risk associated with lifting loads. Ten healthy volunteers were enrolled in this study performing specific weight-lifting tasks wearing two inertial measurement units on the sternum and lumbar region. The acquired inertial signals were appropriately processed to extract several features in the time-domain and frequency-domain which have been used as input to several machine learning algorithms. Excellent results in discriminating biomechanical risk classes were obtained reaching accuracies and areas under the receiver operating characteristic curve above 86% and 95%, respectively. In addition, the sternum emerged as the most informative body landmark, while the mean absolute value was identified as the most informative feature. Future investigations on a larger study population could confirm the potential of the proposed automatic procedure to be used in the workplace in combination with well-established methodologies.

使用机器学习算法和惯性传感器自动评估生物力学风险的方法。
与工作有关的肌肉骨骼疾病是一个重大的职业健康问题。这些疾病包括一系列由与手工材料处理相关的特定风险因素引起的疾病,例如:强度、重复和持续时间。多年来,已经开发了几种观察方法来评估生物力学风险,但它们的局限性主要取决于临床医生的主观评估。因此,与人工智能相结合的可穿戴传感器最近在职业人体工程学领域得到了整合。本研究旨在开发一种基于机器学习算法和惯性可穿戴传感器的新技术方法,能够自动识别与提升载荷相关的生物力学风险。10名健康志愿者参加了这项研究,他们在胸骨和腰椎区域佩戴了两个惯性测量装置,进行特定的举重任务。对采集到的惯性信号进行适当处理,提取时域和频域特征,并将其作为多种机器学习算法的输入。在区分生物力学风险等级方面取得了优异的结果,分别达到86%和95%以上的准确度和接受者工作特征曲线下的面积。此外,胸骨是最具信息量的身体标志,而平均绝对值被认为是最具信息量的特征。今后对更大的研究人群进行的调查可以证实拟议的自动程序结合已确立的方法在工作场所使用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信