Panisak Boonamnaj, Panyakorn Taweechat, Pisit Lerttanakij, R B Pandey, Montserrat Samsó, Pornthep Sompornpisut
{"title":"Probing Domain Interactions in a Large Multimeric Protein: Molecular Dynamics and Bioinformatic Analysis of Closed and Open States of RyR1.","authors":"Panisak Boonamnaj, Panyakorn Taweechat, Pisit Lerttanakij, R B Pandey, Montserrat Samsó, Pornthep Sompornpisut","doi":"10.1088/1478-3975/ae10f7","DOIUrl":null,"url":null,"abstract":"<p><p>The ryanodine receptor isoform-1 (RyR1) is a large intracellular calcium release channel essential for skeletal muscle contraction. While cryo-electron microscopy (cryo-EM) has revealed structural snapshots of RyR1 in closed and open states, the dynamic features associated with calcium-dependent gating remain incompletely understood. In this study, we integrated all-atom molecular dynamics (MD) simulations with domain-level bioinformatic analyses to characterize and compare the structural dynamics of RyR1 in its closed and open conformations. Our simulations revealed distinct structural differences, including domain flexibility patterns, solvent accessibility, and hydrogen bonding networks, between the closed and open states. The closed state exhibited more extensive inter-subunit contacts and stable hydrogen-bonding networks, supporting a compact architecture characterized by inter-subunit domain engagement and intra-subunit domain loosening. In contrast, the open state showed increased solvent exposure and reduced inter-subunit interactions, reflecting inter-subunit domain loosening coupled with intra-subunit domain engagement, particularly in regions connecting the cytoplasmic and pore-forming domains. The comparative approach provides structural perspectives on how calcium binding may contribute to RyR1's conformational organization relevant to gating function. Our findings highlight the utility of integrating MD simulations with domain-scale analyses to investigate large protein complexes and generate hypotheses for future experimental validation.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ae10f7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ryanodine receptor isoform-1 (RyR1) is a large intracellular calcium release channel essential for skeletal muscle contraction. While cryo-electron microscopy (cryo-EM) has revealed structural snapshots of RyR1 in closed and open states, the dynamic features associated with calcium-dependent gating remain incompletely understood. In this study, we integrated all-atom molecular dynamics (MD) simulations with domain-level bioinformatic analyses to characterize and compare the structural dynamics of RyR1 in its closed and open conformations. Our simulations revealed distinct structural differences, including domain flexibility patterns, solvent accessibility, and hydrogen bonding networks, between the closed and open states. The closed state exhibited more extensive inter-subunit contacts and stable hydrogen-bonding networks, supporting a compact architecture characterized by inter-subunit domain engagement and intra-subunit domain loosening. In contrast, the open state showed increased solvent exposure and reduced inter-subunit interactions, reflecting inter-subunit domain loosening coupled with intra-subunit domain engagement, particularly in regions connecting the cytoplasmic and pore-forming domains. The comparative approach provides structural perspectives on how calcium binding may contribute to RyR1's conformational organization relevant to gating function. Our findings highlight the utility of integrating MD simulations with domain-scale analyses to investigate large protein complexes and generate hypotheses for future experimental validation.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.