The bicomplex-real calculus and applications to bicomplex Hermite-Itô polynomials.

IF 3.7 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Daniel Alpay, Kamal Diki, Mihaela Vajiac
{"title":"The bicomplex-real calculus and applications to bicomplex Hermite-Itô polynomials.","authors":"Daniel Alpay, Kamal Diki, Mihaela Vajiac","doi":"10.1098/rsta.2024.0416","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we extend the notions of complex C-R-calculus and complex Hermite polynomials to the bicomplex setting and compare the bicomplex polyanalytic function theory with the classical complex case. Specifically, we introduce two kinds of bicomplex Hermite polynomials and present some of their basic properties, such as the Rodrigues formula and generating functions. We also define three bicomplex Landau operators and calculate their action on the bicomplex Hermite polynomials of the first kind.This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2306","pages":"20240416"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0416","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the notions of complex C-R-calculus and complex Hermite polynomials to the bicomplex setting and compare the bicomplex polyanalytic function theory with the classical complex case. Specifically, we introduce two kinds of bicomplex Hermite polynomials and present some of their basic properties, such as the Rodrigues formula and generating functions. We also define three bicomplex Landau operators and calculate their action on the bicomplex Hermite polynomials of the first kind.This article is part of the theme issue 'Numerical analysis, spectral graph theory, orthogonal polynomials and quantum algorithms'.

双复实微积分及其在双复Hermite-Itô多项式中的应用。
本文将复c - r微积分和复埃尔米特多项式的概念推广到双复情况,并将双复多解析函数理论与经典复情况进行了比较。具体地说,我们介绍了两类双复埃尔米特多项式,并给出了它们的一些基本性质,如Rodrigues公式和生成函数。定义了三种双复朗道算子,并计算了它们对第一类双复埃尔米特多项式的作用。本文是专题“数值分析、谱图理论、正交多项式和量子算法”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信