Tingting Zhang, Fang Gu, Weihua Li, Ruxue Han, Xinyu Liu, Chan Dai, Di Zhang, Hua Li
{"title":"Characterization of cervical microbiota in cervical intraepithelial neoplasia and cervical cancer using low-coverage whole genome sequencing.","authors":"Tingting Zhang, Fang Gu, Weihua Li, Ruxue Han, Xinyu Liu, Chan Dai, Di Zhang, Hua Li","doi":"10.1128/spectrum.03206-24","DOIUrl":null,"url":null,"abstract":"<p><p>This study characterized compositional shifts in cervical microbiota across disease stages from benign conditions through cervical intraepithelial neoplasia (CIN) to cervical cancer (CC) and investigated interactions with high-risk HPV (hr-HPV) infection using species-resolution profiling to identify severity-associated biomarkers. Cervical exfoliated epithelial cells from 50 patients (eight normal/CIN1, 15 CIN2, 19 CIN3, 5 CC) were analyzed using Low-Coverage Whole Genome Sequencing combined with the Ultrasensitive Chromosomal Aneuploidy Detector (UCAD), a technology featuring a two-step normalization framework that systematically converts raw microbial reads into statistically validated abundance deviations. This enables quantitative identification of pathologically relevant microbiota through cohort-wide Z-score benchmarking. Microbial diversity, differential biomarkers, and HPV-microbiota interactions were assessed using Kruskal-Wallis tests, LEfSe, and Random Forest modeling. Results revealed progressive <i>Lactobacillus</i> depletion (e.g., <i>Lactobacillus crispatus</i>: 32.9% in ≤CIN2 vs. 8.8% in CC) and enrichment of pathobionts like <i>Gardnerella</i> and <i>Bacteroides</i> with lesion severity. CC exhibited the highest microbial diversity (Shannon index: CC vs. CIN2, <i>P</i>=0.045), dominated by HPV16 (11.8%), <i>Bacteroides</i> (55.4%), and <i>Porphyromonas</i> (25.2%). LEfSe identified HPV16, HPV35, <i>Parvimonas micra</i>, and <i>Anaerococcus lactolyticus</i> as CC-specific markers, while Random Forest highlighted <i>Mobiluncus curtisii</i> (importance score=2.0) and HPV16 as key discriminators. CC microbiota showed significant Bacteroidetes enrichment (82% at class level) and reduced Firmicutes abundance. These findings suggest carcinogenesis-associated microbial restructuring, marked by <i>Lactobacillus</i> loss, anaerobic proliferation, and HPV16/35 dominance, potentially modulating disease progression. The identified signatures may inform diagnostic development and microbiome-targeted therapies.IMPORTANCEOur study pioneers an LC-WGS/UCAD approach to characterize microbial across the spectrum from benign lesions through precancerous cervical intraepithelial neoplasia to invasive cervical carcinoma. By identifying lesion-specific microbial biomarkers and HPV-associated cofactors, this work advances mechanistic understanding of microbiota-driven oncogenesis and informs future strategies for microbiota-targeted cervical cancer prevention.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0320624"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.03206-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study characterized compositional shifts in cervical microbiota across disease stages from benign conditions through cervical intraepithelial neoplasia (CIN) to cervical cancer (CC) and investigated interactions with high-risk HPV (hr-HPV) infection using species-resolution profiling to identify severity-associated biomarkers. Cervical exfoliated epithelial cells from 50 patients (eight normal/CIN1, 15 CIN2, 19 CIN3, 5 CC) were analyzed using Low-Coverage Whole Genome Sequencing combined with the Ultrasensitive Chromosomal Aneuploidy Detector (UCAD), a technology featuring a two-step normalization framework that systematically converts raw microbial reads into statistically validated abundance deviations. This enables quantitative identification of pathologically relevant microbiota through cohort-wide Z-score benchmarking. Microbial diversity, differential biomarkers, and HPV-microbiota interactions were assessed using Kruskal-Wallis tests, LEfSe, and Random Forest modeling. Results revealed progressive Lactobacillus depletion (e.g., Lactobacillus crispatus: 32.9% in ≤CIN2 vs. 8.8% in CC) and enrichment of pathobionts like Gardnerella and Bacteroides with lesion severity. CC exhibited the highest microbial diversity (Shannon index: CC vs. CIN2, P=0.045), dominated by HPV16 (11.8%), Bacteroides (55.4%), and Porphyromonas (25.2%). LEfSe identified HPV16, HPV35, Parvimonas micra, and Anaerococcus lactolyticus as CC-specific markers, while Random Forest highlighted Mobiluncus curtisii (importance score=2.0) and HPV16 as key discriminators. CC microbiota showed significant Bacteroidetes enrichment (82% at class level) and reduced Firmicutes abundance. These findings suggest carcinogenesis-associated microbial restructuring, marked by Lactobacillus loss, anaerobic proliferation, and HPV16/35 dominance, potentially modulating disease progression. The identified signatures may inform diagnostic development and microbiome-targeted therapies.IMPORTANCEOur study pioneers an LC-WGS/UCAD approach to characterize microbial across the spectrum from benign lesions through precancerous cervical intraepithelial neoplasia to invasive cervical carcinoma. By identifying lesion-specific microbial biomarkers and HPV-associated cofactors, this work advances mechanistic understanding of microbiota-driven oncogenesis and informs future strategies for microbiota-targeted cervical cancer prevention.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.