Pieter R. Norden , Riley J. Wedan , Samuel E.J. Preston , Morgan Canfield , Naomi Graber , Jacob Z. Longenecker , Olivia A. Pentecost , Elizabeth McLaughlin , Madeleine L. Hart , Sara M. Nowinski
{"title":"Mitochondrial phosphopantetheinylation is required for oxidative metabolism","authors":"Pieter R. Norden , Riley J. Wedan , Samuel E.J. Preston , Morgan Canfield , Naomi Graber , Jacob Z. Longenecker , Olivia A. Pentecost , Elizabeth McLaughlin , Madeleine L. Hart , Sara M. Nowinski","doi":"10.1016/j.metabol.2025.156413","DOIUrl":null,"url":null,"abstract":"<div><div>4′-Phosphopantetheinyl (4’PP) groups are essential co-factors added to target proteins by <u>p</u>hospho<u>p</u>antetheinyl <u>t</u>ransferase (PPTase) enzymes. Although mitochondrial 4’PP-modified proteins have been described for decades, a mitochondrially-localized PPTase has never been found in mammals. We discovered that the cytoplasmic PPTase <u>a</u>mino<u>a</u>dipate <u>s</u>emialdehyde <u>d</u>ehydrogenase <u>p</u>hospho<u>p</u>antetheinyl <u>t</u>ransferase (AASDHPPT) is required for mitochondrial respiration and oxidative metabolism. Loss of AASDHPPT results in failed 4’PP modification of the mitochondrial acyl carrier protein and blunted activity of the mitochondrial fatty acid synthesis (mtFAS) pathway. We found that in addition to its cytoplasmic localization, AASDHPPT localizes to the mitochondrial matrix via an N-terminal mitochondrial targeting sequence contained within the first 20 amino acids of the protein. Our data show that this novel mitochondrial localization of AASDHPPT is required to support mtFAS activity and oxidative metabolism. We further identify five variants of uncertain significance in <em>AASDHPPT</em> that are likely pathogenic in humans due to loss of mtFAS activity.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"174 ","pages":"Article 156413"},"PeriodicalIF":11.9000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525002823","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
4′-Phosphopantetheinyl (4’PP) groups are essential co-factors added to target proteins by phosphopantetheinyl transferase (PPTase) enzymes. Although mitochondrial 4’PP-modified proteins have been described for decades, a mitochondrially-localized PPTase has never been found in mammals. We discovered that the cytoplasmic PPTase aminoadipate semialdehyde dehydrogenase phosphopantetheinyl transferase (AASDHPPT) is required for mitochondrial respiration and oxidative metabolism. Loss of AASDHPPT results in failed 4’PP modification of the mitochondrial acyl carrier protein and blunted activity of the mitochondrial fatty acid synthesis (mtFAS) pathway. We found that in addition to its cytoplasmic localization, AASDHPPT localizes to the mitochondrial matrix via an N-terminal mitochondrial targeting sequence contained within the first 20 amino acids of the protein. Our data show that this novel mitochondrial localization of AASDHPPT is required to support mtFAS activity and oxidative metabolism. We further identify five variants of uncertain significance in AASDHPPT that are likely pathogenic in humans due to loss of mtFAS activity.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism