A TIMELESS link to dedifferentiation in thyroid cancer.

IF 3.9 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Jie-Jen Lee, Yi-Chiung Hsu, Chi-Yu Kuo, Shih-Yuan Huang, Shao-Chiang Chang, Shih-Ping Cheng
{"title":"A TIMELESS link to dedifferentiation in thyroid cancer.","authors":"Jie-Jen Lee, Yi-Chiung Hsu, Chi-Yu Kuo, Shih-Yuan Huang, Shao-Chiang Chang, Shih-Ping Cheng","doi":"10.1530/JOE-25-0136","DOIUrl":null,"url":null,"abstract":"<p><p>TIMELESS is considered a molecular hinge linking circadian rhythms and the cell cycle. We recently identified TIMELESS as one of the upregulated core circadian clock genes during thyroid cancer dedifferentiation, but its expression and significance in thyroid cancer remain unclear. To address this, we assessed TIMELESS expression in thyroid neoplasms using bioinformatics analysis, immunoblotting, and immunohistochemistry. TIMELESS expression progressively increased from normal thyroid tissue to differentiated thyroid cancer and then to anaplastic thyroid cancer. Silencing TIMELESS expression in thyroid cancer cells reduced clonogenicity and spheroid formation, induced G2/M cell cycle arrest, and impeded xenograft growth in NOD SCID mice. In the Cancer Genome Atlas, TIMELESS expression was negatively correlated with recombination proficiency scores. Knocking down TIMELESS increased sensitivity to doxorubicin in thyroid cancer cells and upregulated the mRNA expression of NKX2-1 and SLC5A5. In conclusion, the overexpression of TIMELESS is associated with thyroid cancer dedifferentiation and may serve as a potential target for combination therapies.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-25-0136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

TIMELESS is considered a molecular hinge linking circadian rhythms and the cell cycle. We recently identified TIMELESS as one of the upregulated core circadian clock genes during thyroid cancer dedifferentiation, but its expression and significance in thyroid cancer remain unclear. To address this, we assessed TIMELESS expression in thyroid neoplasms using bioinformatics analysis, immunoblotting, and immunohistochemistry. TIMELESS expression progressively increased from normal thyroid tissue to differentiated thyroid cancer and then to anaplastic thyroid cancer. Silencing TIMELESS expression in thyroid cancer cells reduced clonogenicity and spheroid formation, induced G2/M cell cycle arrest, and impeded xenograft growth in NOD SCID mice. In the Cancer Genome Atlas, TIMELESS expression was negatively correlated with recombination proficiency scores. Knocking down TIMELESS increased sensitivity to doxorubicin in thyroid cancer cells and upregulated the mRNA expression of NKX2-1 and SLC5A5. In conclusion, the overexpression of TIMELESS is associated with thyroid cancer dedifferentiation and may serve as a potential target for combination therapies.

与甲状腺癌去分化的永恒联系。
TIMELESS被认为是连接昼夜节律和细胞周期的分子铰链。我们最近发现,TIMELESS是甲状腺癌去分化过程中上调的核心生物钟基因之一,但其在甲状腺癌中的表达和意义尚不清楚。为了解决这个问题,我们使用生物信息学分析、免疫印迹和免疫组织化学来评估甲状腺肿瘤中TIMELESS的表达。从正常甲状腺组织到分化甲状腺癌再到间变性甲状腺癌,TIMELESS的表达逐渐增加。在NOD SCID小鼠中,沉默甲状腺癌细胞中的TIMELESS表达可降低克隆性和球状体形成,诱导G2/M细胞周期阻滞,并阻碍异种移植物生长。在癌症基因组图谱中,TIMELESS表达与重组熟练度得分呈负相关。抑制TIMELESS可增加甲状腺癌细胞对阿霉素的敏感性,并上调NKX2-1和SLC5A5的mRNA表达。总之,TIMELESS的过表达与甲状腺癌去分化有关,可能是联合治疗的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信