Yiyi Xiao, Shiuan-Tze Wu, Yinan Xuan, Scott A Rifkin, Chih-Ying Su
{"title":"Simultaneous recording of spikes and calcium signals in odor-evoked responses of <i>Drosophila</i> antennal neurons.","authors":"Yiyi Xiao, Shiuan-Tze Wu, Yinan Xuan, Scott A Rifkin, Chih-Ying Su","doi":"10.1080/01677063.2025.2561596","DOIUrl":null,"url":null,"abstract":"<p><p>Most insects, including agricultural pests and disease vectors, rely on olfaction for key innate behaviors. Consequently, there is growing interest in studying insect olfaction to gain insights into odor-driven behavior and to support efforts in vector control. Calcium imaging using GCaMP fluorescence is widely used to identify olfactory receptor neurons (ORNs) responsive to ethologically relevant odors. However, accurate interpretation of GCaMP signals in the antenna requires understanding both response uniformity within an ORN population and how calcium signals relate to spike activity. To address this, we optimized a dual-modality recording method combining single-sensillum electrophysiology and widefield imaging for <i>Drosophila</i> ORNs. Calcium imaging showed that homotypic ab2A neurons exhibit similar odor sensitivity, consistent with spike recordings, indicating that a single ORN's response can reliably represent its homotypic counterparts. Furthermore, concurrent dual recordings revealed that peak calcium responses are linearly correlated with spike activity, regardless of imaging site (soma or dendrites), GCaMP variant, odorant, or fly age. These findings validate the use of somatic calcium signals as a reliable proxy for spike activity in fly ORNs and provide a foundation for future large-scale surveys of spike-calcium response relationships across diverse ORN types.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":" ","pages":"1-11"},"PeriodicalIF":2.0000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2025.2561596","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Most insects, including agricultural pests and disease vectors, rely on olfaction for key innate behaviors. Consequently, there is growing interest in studying insect olfaction to gain insights into odor-driven behavior and to support efforts in vector control. Calcium imaging using GCaMP fluorescence is widely used to identify olfactory receptor neurons (ORNs) responsive to ethologically relevant odors. However, accurate interpretation of GCaMP signals in the antenna requires understanding both response uniformity within an ORN population and how calcium signals relate to spike activity. To address this, we optimized a dual-modality recording method combining single-sensillum electrophysiology and widefield imaging for Drosophila ORNs. Calcium imaging showed that homotypic ab2A neurons exhibit similar odor sensitivity, consistent with spike recordings, indicating that a single ORN's response can reliably represent its homotypic counterparts. Furthermore, concurrent dual recordings revealed that peak calcium responses are linearly correlated with spike activity, regardless of imaging site (soma or dendrites), GCaMP variant, odorant, or fly age. These findings validate the use of somatic calcium signals as a reliable proxy for spike activity in fly ORNs and provide a foundation for future large-scale surveys of spike-calcium response relationships across diverse ORN types.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms