Qingwen Wang, Zhixiao Xu, Xinwen Ding, Aiting Wang, Sunfengda Song, Shuang Zhang, Youming Chen, Yi Ding, Lai Jiang, Xianting Ding
{"title":"Ten mouse organs proteome and metabolome atlas from adult to aging.","authors":"Qingwen Wang, Zhixiao Xu, Xinwen Ding, Aiting Wang, Sunfengda Song, Shuang Zhang, Youming Chen, Yi Ding, Lai Jiang, Xianting Ding","doi":"10.1186/s13073-025-01535-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aging is a complex biological process characterized by progressive molecular alterations across multiple organ systems, significantly influencing disease susceptibility and mortality. Unraveling molecular interactions driving aging is crucial for interventions promoting healthy aging and mitigating senescence. However, the systemic mechanisms governing both inter-organ interactions and organ-specific aging trajectories remain incompletely characterized.</p><p><strong>Methods: </strong>To investigate the molecular dynamics of aging, we conducted a systematic multi-omics analysis of 400 tissue samples collected from 10 organs (brain, heart, intestine, kidney, liver, lung, muscle, skin, spleen, and stomach) in mice at four distinct life stages: 4, 8, 12, and 20 months (from youth to elderly). Proteomic profiling was performed using data-independent acquisition (DIA) technology, while metabolomic analysis was performed in both positive and negative ion modes. Differential expression analysis of proteins and metabolites was employed to construct a comprehensive multi-organ aging dataset.</p><p><strong>Results: </strong>Proteomic profiling across ten organs at four age stages identified a total of 14,763 protein groups (PGs). Of these, 18 proteins, including Ighm, C4b, and Hpx, exhibited consistent age-related differential expression patterns across all ten organs. Functional enrichment analysis highlighted the humoral immune response as a primary driver of age-related expression changes. Additionally, this study mapped a set of age-unique proteins, such as Hp, Egf, and Arg, with distinct expression patterns in aging organs. Metabolic analysis identified 3779 metabolites, with key aging-related metabolites such as NAD+, inosine, xanthine, and hypoxanthine showing significant expression changes across multiple organs. Pathway enrichment analysis revealed consistent alterations in purine metabolism, pyrimidine metabolism, riboflavin metabolism, and nicotinate/nicotinamide metabolism during multi-organ aging.</p><p><strong>Conclusions: </strong>This study provides a multi-omics atlas of multi-organ aging, revealing both intra- and inter-organ similarities and heterogeneities. These findings offer valuable insights into the molecular mechanisms underlying geriatric health decline and serve as a foundational resource for organism-systematic early warning and targeted interventions against aging-associated pathologies.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"116"},"PeriodicalIF":10.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01535-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Aging is a complex biological process characterized by progressive molecular alterations across multiple organ systems, significantly influencing disease susceptibility and mortality. Unraveling molecular interactions driving aging is crucial for interventions promoting healthy aging and mitigating senescence. However, the systemic mechanisms governing both inter-organ interactions and organ-specific aging trajectories remain incompletely characterized.
Methods: To investigate the molecular dynamics of aging, we conducted a systematic multi-omics analysis of 400 tissue samples collected from 10 organs (brain, heart, intestine, kidney, liver, lung, muscle, skin, spleen, and stomach) in mice at four distinct life stages: 4, 8, 12, and 20 months (from youth to elderly). Proteomic profiling was performed using data-independent acquisition (DIA) technology, while metabolomic analysis was performed in both positive and negative ion modes. Differential expression analysis of proteins and metabolites was employed to construct a comprehensive multi-organ aging dataset.
Results: Proteomic profiling across ten organs at four age stages identified a total of 14,763 protein groups (PGs). Of these, 18 proteins, including Ighm, C4b, and Hpx, exhibited consistent age-related differential expression patterns across all ten organs. Functional enrichment analysis highlighted the humoral immune response as a primary driver of age-related expression changes. Additionally, this study mapped a set of age-unique proteins, such as Hp, Egf, and Arg, with distinct expression patterns in aging organs. Metabolic analysis identified 3779 metabolites, with key aging-related metabolites such as NAD+, inosine, xanthine, and hypoxanthine showing significant expression changes across multiple organs. Pathway enrichment analysis revealed consistent alterations in purine metabolism, pyrimidine metabolism, riboflavin metabolism, and nicotinate/nicotinamide metabolism during multi-organ aging.
Conclusions: This study provides a multi-omics atlas of multi-organ aging, revealing both intra- and inter-organ similarities and heterogeneities. These findings offer valuable insights into the molecular mechanisms underlying geriatric health decline and serve as a foundational resource for organism-systematic early warning and targeted interventions against aging-associated pathologies.
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.