Cell-cell interactions as predictive and prognostic markers for drug responses in cancer.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Xuehan Lu, Xiao Tan, Eun Ju Kim, Xinnan Jin, Meg L Donovan, Jazmina L Gonzalez Cruz, Zherui Xiong, Maria Reyes Becerra de Los Reyes Becerra Perez, Jialei Gong, James Monkman, Divya Agrawal, Arutha Kulasinghe, Quan Nguyen, Zewen Kelvin Tuong
{"title":"Cell-cell interactions as predictive and prognostic markers for drug responses in cancer.","authors":"Xuehan Lu, Xiao Tan, Eun Ju Kim, Xinnan Jin, Meg L Donovan, Jazmina L Gonzalez Cruz, Zherui Xiong, Maria Reyes Becerra de Los Reyes Becerra Perez, Jialei Gong, James Monkman, Divya Agrawal, Arutha Kulasinghe, Quan Nguyen, Zewen Kelvin Tuong","doi":"10.1186/s13073-025-01518-5","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment (TME) is composed of a diverse and dynamic spectrum of cell types, cellular activities, and cell-cell interactions (CCI). Understanding the complex CCI within the TME is critical for advancing cancer treatment strategies, including modulating or predicting drug responses. Recent advances in omics technologies, including spatial transcriptomics and proteomics, have allowed improved mapping of CCI within the TME. The integration of omics insights from different platforms may facilitate the identification of novel biomarkers and therapeutic targets. This review discusses the latest computational methods for inferring CCIs from different omics data and various CCI and drug databases, emphasizing their applications in predicting drug responses. We also comprehensively summarize recent patents, clinical trials, and publications that leverage these cellular interactions to refine cancer treatment approaches. We believe that the integration of these CCI-focused technologies can improve personalized therapy for cancer patients, thereby optimizing treatment outcomes and paving the way for next-generation precision oncology.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"117"},"PeriodicalIF":10.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12506067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01518-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor microenvironment (TME) is composed of a diverse and dynamic spectrum of cell types, cellular activities, and cell-cell interactions (CCI). Understanding the complex CCI within the TME is critical for advancing cancer treatment strategies, including modulating or predicting drug responses. Recent advances in omics technologies, including spatial transcriptomics and proteomics, have allowed improved mapping of CCI within the TME. The integration of omics insights from different platforms may facilitate the identification of novel biomarkers and therapeutic targets. This review discusses the latest computational methods for inferring CCIs from different omics data and various CCI and drug databases, emphasizing their applications in predicting drug responses. We also comprehensively summarize recent patents, clinical trials, and publications that leverage these cellular interactions to refine cancer treatment approaches. We believe that the integration of these CCI-focused technologies can improve personalized therapy for cancer patients, thereby optimizing treatment outcomes and paving the way for next-generation precision oncology.

Abstract Image

Abstract Image

细胞-细胞相互作用作为癌症药物反应的预测和预后标志物。
肿瘤微环境(TME)由细胞类型、细胞活动和细胞-细胞相互作用(CCI)的多样化和动态谱组成。了解TME内复杂的CCI对于推进癌症治疗策略至关重要,包括调节或预测药物反应。组学技术的最新进展,包括空间转录组学和蛋白质组学,已经允许改进在TME中绘制CCI。来自不同平台的组学见解的整合可能有助于识别新的生物标志物和治疗靶点。本文综述了从不同组学数据以及各种CCI和药物数据库推断CCI的最新计算方法,重点介绍了它们在预测药物反应方面的应用。我们还全面总结了利用这些细胞相互作用来改进癌症治疗方法的最新专利、临床试验和出版物。我们相信,这些以cci为重点的技术的整合可以改善癌症患者的个性化治疗,从而优化治疗结果,为下一代精准肿瘤学铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信