Hiroki Toyoda, Doyun Kim, Byeong Geon Koh, Tomomi Sano, Takashi Kanematsu, Seog Bae Oh, Youngnam Kang
{"title":"Chronic stress impairs autoinhibition in neurons of the locus coeruleus to increase asparagine endopeptidase activity.","authors":"Hiroki Toyoda, Doyun Kim, Byeong Geon Koh, Tomomi Sano, Takashi Kanematsu, Seog Bae Oh, Youngnam Kang","doi":"10.7554/eLife.106362","DOIUrl":null,"url":null,"abstract":"<p><p>Impairments of locus coeruleus (LC) are implicated in anxiety/depression and Alzheimer's disease (AD). Increases in cytosolic noradrenaline (NA) concentration and monoamine oxidase A (MAO-A) activity initiate the LC impairment through production of NA metabolite, 3,4-dihydroxyphenyl-glycolaldehyde (DOPEGAL), by MAO-A. However, how NA accumulates in soma/dendritic cytosol of LC neurons has never been addressed despite the fact that NA is virtually absent in cytosol while NA is produced exclusively in cytoplasmic vesicles from dopamine by dopamine-β-hydroxylase. Since reuptake of autocrine-released NA following spike activity is the major source of NA accumulation, we investigated whether and how chronic stress can increase the spike activity accompanied by NA autocrine. Overexcitation of LC neurons is normally prevented by the autoinhibition mediated by activation of α2A-adrenergic receptor (AR)-coupled inwardly rectifying potassium-current (GIRK-I) with autocrine-released NA. Patch-clamp study revealed that NA-induced GIRK-I in LC neurons was decreased in chronic restraint stress (RS) mice, while a similar decrease was gradually caused by repeated excitation. Chronic RS caused internalization of α2A-ARs expressed in cell membrane in LC neurons and decreased protein/mRNA levels of α2A-ARs/GIRKs in membrane fraction. Subsequently, chronic RS increased the protein levels of MAO-A, DOPEGAL-induced asparagine endopeptidase (AEP), and tau N368. These results suggest that chronic RS-induced overexcitation due to the internalization of α2A-ARs/GIRK is accompanied by [Ca<sup>2+</sup>]<sub>i</sub> increases, subsequently increasing Ca<sup>2+</sup>-dependent MAO-A activity and NA autocrine. Thus, it is likely that internalization of α2A-AR increased cytosolic NA, as reflected in AEP increases, by facilitating reuptake of autocrine-released NA. The suppression of α2A-AR internalization may have a translational potential for anxiety/AD treatment.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.106362","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Impairments of locus coeruleus (LC) are implicated in anxiety/depression and Alzheimer's disease (AD). Increases in cytosolic noradrenaline (NA) concentration and monoamine oxidase A (MAO-A) activity initiate the LC impairment through production of NA metabolite, 3,4-dihydroxyphenyl-glycolaldehyde (DOPEGAL), by MAO-A. However, how NA accumulates in soma/dendritic cytosol of LC neurons has never been addressed despite the fact that NA is virtually absent in cytosol while NA is produced exclusively in cytoplasmic vesicles from dopamine by dopamine-β-hydroxylase. Since reuptake of autocrine-released NA following spike activity is the major source of NA accumulation, we investigated whether and how chronic stress can increase the spike activity accompanied by NA autocrine. Overexcitation of LC neurons is normally prevented by the autoinhibition mediated by activation of α2A-adrenergic receptor (AR)-coupled inwardly rectifying potassium-current (GIRK-I) with autocrine-released NA. Patch-clamp study revealed that NA-induced GIRK-I in LC neurons was decreased in chronic restraint stress (RS) mice, while a similar decrease was gradually caused by repeated excitation. Chronic RS caused internalization of α2A-ARs expressed in cell membrane in LC neurons and decreased protein/mRNA levels of α2A-ARs/GIRKs in membrane fraction. Subsequently, chronic RS increased the protein levels of MAO-A, DOPEGAL-induced asparagine endopeptidase (AEP), and tau N368. These results suggest that chronic RS-induced overexcitation due to the internalization of α2A-ARs/GIRK is accompanied by [Ca2+]i increases, subsequently increasing Ca2+-dependent MAO-A activity and NA autocrine. Thus, it is likely that internalization of α2A-AR increased cytosolic NA, as reflected in AEP increases, by facilitating reuptake of autocrine-released NA. The suppression of α2A-AR internalization may have a translational potential for anxiety/AD treatment.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.