FedStenoNet: tackling domain shift in x-ray coronary angiography through a personalized federated detection framework.

IF 6.3 2区 医学 Q1 BIOLOGY
Mariachiara Di Cosmo, Giovanna Migliorelli, Francesca Pia Villani, Matteo Francioni, Andi Muçaj, Emanuele Frontoni, Sara Moccia, Maria Chiara Fiorentino
{"title":"FedStenoNet: tackling domain shift in x-ray coronary angiography through a personalized federated detection framework.","authors":"Mariachiara Di Cosmo, Giovanna Migliorelli, Francesca Pia Villani, Matteo Francioni, Andi Muçaj, Emanuele Frontoni, Sara Moccia, Maria Chiara Fiorentino","doi":"10.1016/j.compbiomed.2025.111172","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The automatic identification of coronary stenosis in x-ray coronary angiography (XCA) is hindered by the variability in imaging protocols and patient characteristics across different hospitals, leading to significant domain shifts. These challenges impact the ability of algorithms to generalize effectively across diverse clinical environments. This study aims to address these issues by proposing FedStenoNet, a personalized federated learning (PFL) framework tailored for enhanced stenosis detection.</p><p><strong>Methods: </strong>In place of a single global model, FedStenoNet shares only backbone weights across clients and customizes the model to each client's specific data distribution. The framework also incorporates histogram matching to tackle inter-dataset variability and a novel test-time adaptation algorithm to mitigate intra-dataset variability.</p><p><strong>Results: </strong>Evaluation of FedStenoNet across three non-identical and independently distributed datasets (one released with this study) demonstrated an average F1-score of 50.82%. FedStenoNet shows promising diagnostic accuracy in a challenging domain, where achieving high performance has proven difficult.</p><p><strong>Conclusions: </strong>By managing domain shifts via FedStenoNet, this study sets a promising direction for future research, further supported by the release of one XCA dataset.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"198 Pt A","pages":"111172"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2025.111172","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: The automatic identification of coronary stenosis in x-ray coronary angiography (XCA) is hindered by the variability in imaging protocols and patient characteristics across different hospitals, leading to significant domain shifts. These challenges impact the ability of algorithms to generalize effectively across diverse clinical environments. This study aims to address these issues by proposing FedStenoNet, a personalized federated learning (PFL) framework tailored for enhanced stenosis detection.

Methods: In place of a single global model, FedStenoNet shares only backbone weights across clients and customizes the model to each client's specific data distribution. The framework also incorporates histogram matching to tackle inter-dataset variability and a novel test-time adaptation algorithm to mitigate intra-dataset variability.

Results: Evaluation of FedStenoNet across three non-identical and independently distributed datasets (one released with this study) demonstrated an average F1-score of 50.82%. FedStenoNet shows promising diagnostic accuracy in a challenging domain, where achieving high performance has proven difficult.

Conclusions: By managing domain shifts via FedStenoNet, this study sets a promising direction for future research, further supported by the release of one XCA dataset.

FedStenoNet:通过个性化联邦检测框架解决x线冠状动脉造影的域移位。
背景与目的:x线冠状动脉造影(XCA)中冠状动脉狭窄的自动识别受到不同医院成像方案和患者特征的差异的阻碍,导致显著的领域转移。这些挑战影响了算法在不同临床环境中有效泛化的能力。本研究旨在通过提出FedStenoNet来解决这些问题,FedStenoNet是一种定制的个性化联邦学习(PFL)框架,用于增强狭窄检测。方法:代替单一的全局模型,FedStenoNet只在客户端之间共享骨干权重,并根据每个客户端的特定数据分布定制模型。该框架还结合了直方图匹配来解决数据集间的可变性,以及一种新的测试时间自适应算法来缓解数据集内的可变性。结果:FedStenoNet在三个不相同且独立分布的数据集(其中一个与本研究一起发布)上的评估显示平均f1得分为50.82%。FedStenoNet在具有挑战性的领域显示出有希望的诊断准确性,在该领域实现高性能已被证明是困难的。结论:通过FedStenoNet管理领域转移,本研究为未来的研究设定了一个有希望的方向,并得到了一个XCA数据集的发布的进一步支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信