Germaine Aalderink, Hugo Brouwer, Jingxuan Wang, Aafke W F Janssen, Meike van der Zande, Coen Govers, Tamara Hoppenbrouwers, Hans Bouwmeester, Mathias Busch
{"title":"Pro-inflammatory response of human iPSC-derived intestinal epithelial monolayers towards microbial toxins LPS and nigericin.","authors":"Germaine Aalderink, Hugo Brouwer, Jingxuan Wang, Aafke W F Janssen, Meike van der Zande, Coen Govers, Tamara Hoppenbrouwers, Hans Bouwmeester, Mathias Busch","doi":"10.1007/s00204-025-04215-9","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal epithelium forms a selective barrier between the intestinal lumen and the subepithelial layer. Intestinal epithelium plays a critical role in initiating inflammatory tissue responses in vivo, which remains challenging to emulate in vitro. Caco-2 cells are commonly used models of the intestinal epithelium, but lack crucial receptors and pathways associated with pro-inflammatory reactions. Human-induced pluripotent stem cell (iPSC)-based in vitro models are assumed to provide a system that better emulates in vivo responses. This study evaluated the inflammatory response of iPSC-derived intestinal epithelial cells (IEC) and Caco-2-derived intestinal epithelial cells to the microbial toxins lipopolysaccharide (LPS) and nigericin. Here, iPSCs were differentiated towards enterocyte, goblet- and Paneth-like cells without using three-dimensional culture techniques. The formed monolayer barriers were exposed to a combination of 0-100 µM nigericin and 100 ng/mL LPS on either the apical or basolateral side. The treatment-induced expression of cytokine genes and cytokine secretion were compared between the iPSC-derived cell model and differentiated Caco-2 cell layers. Nigericin exposure in combination with LPS significantly reduced transepithelial electrical resistance in the iPSC-derived model, and resulted in a tenfold increased secretion of the pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha compared to the negative control. A similar increase was observed for the mRNA expression of these cytokines. No significant effect on TEER, cytokine secretion, or mRNA expression was observed in the Caco-2 model. Overall, this study shows that iPSC-IECs are a more sensitive model compared to Caco-2 to emulate inflammatory perturbations of the human intestinal epithelium.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-04215-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intestinal epithelium forms a selective barrier between the intestinal lumen and the subepithelial layer. Intestinal epithelium plays a critical role in initiating inflammatory tissue responses in vivo, which remains challenging to emulate in vitro. Caco-2 cells are commonly used models of the intestinal epithelium, but lack crucial receptors and pathways associated with pro-inflammatory reactions. Human-induced pluripotent stem cell (iPSC)-based in vitro models are assumed to provide a system that better emulates in vivo responses. This study evaluated the inflammatory response of iPSC-derived intestinal epithelial cells (IEC) and Caco-2-derived intestinal epithelial cells to the microbial toxins lipopolysaccharide (LPS) and nigericin. Here, iPSCs were differentiated towards enterocyte, goblet- and Paneth-like cells without using three-dimensional culture techniques. The formed monolayer barriers were exposed to a combination of 0-100 µM nigericin and 100 ng/mL LPS on either the apical or basolateral side. The treatment-induced expression of cytokine genes and cytokine secretion were compared between the iPSC-derived cell model and differentiated Caco-2 cell layers. Nigericin exposure in combination with LPS significantly reduced transepithelial electrical resistance in the iPSC-derived model, and resulted in a tenfold increased secretion of the pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha compared to the negative control. A similar increase was observed for the mRNA expression of these cytokines. No significant effect on TEER, cytokine secretion, or mRNA expression was observed in the Caco-2 model. Overall, this study shows that iPSC-IECs are a more sensitive model compared to Caco-2 to emulate inflammatory perturbations of the human intestinal epithelium.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.