Hawking-Type Singularity Theorems for Worldvolume Energy Inequalities

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Melanie Graf, Eleni-Alexandra Kontou, Argam Ohanyan, Benedict Schinnerl
{"title":"Hawking-Type Singularity Theorems for Worldvolume Energy Inequalities","authors":"Melanie Graf,&nbsp;Eleni-Alexandra Kontou,&nbsp;Argam Ohanyan,&nbsp;Benedict Schinnerl","doi":"10.1007/s00023-024-01502-6","DOIUrl":null,"url":null,"abstract":"<div><p>The classical singularity theorems of R. Penrose and S. Hawking from the 1960s show that, given a pointwise energy condition (and some causality as well as initial assumptions), spacetimes cannot be geodesically complete. Despite their great success, the theorems leave room for physically relevant improvements, especially regarding the classical energy conditions as essentially any quantum field theory necessarily violates them. While singularity theorems with weakened energy conditions exist for worldline integral bounds, so-called worldvolume bounds are in some cases more applicable than the worldline ones, such as the case of some massive free fields. In this paper, we study integral Ricci curvature bounds based on worldvolume quantum strong energy inequalities. Under the additional assumption of a—potentially very negative—global timelike Ricci curvature bound, a Hawking-type singularity theorem is proved. Finally, we apply the theorem to a cosmological scenario proving past geodesic incompleteness in cases where the worldline theorem was inconclusive. \n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 11","pages":"3871 - 3906"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01502-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01502-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The classical singularity theorems of R. Penrose and S. Hawking from the 1960s show that, given a pointwise energy condition (and some causality as well as initial assumptions), spacetimes cannot be geodesically complete. Despite their great success, the theorems leave room for physically relevant improvements, especially regarding the classical energy conditions as essentially any quantum field theory necessarily violates them. While singularity theorems with weakened energy conditions exist for worldline integral bounds, so-called worldvolume bounds are in some cases more applicable than the worldline ones, such as the case of some massive free fields. In this paper, we study integral Ricci curvature bounds based on worldvolume quantum strong energy inequalities. Under the additional assumption of a—potentially very negative—global timelike Ricci curvature bound, a Hawking-type singularity theorem is proved. Finally, we apply the theorem to a cosmological scenario proving past geodesic incompleteness in cases where the worldline theorem was inconclusive.

世界体积能量不等式的霍金型奇异定理
20世纪60年代R. Penrose和S. Hawking的经典奇点定理表明,给定一个点向的能量条件(以及一些因果关系和初始假设),时空在测地线上是不完整的。尽管它们取得了巨大的成功,但这些定理在物理上仍有改进的余地,特别是在经典能量条件方面,因为本质上任何量子场论都必然违反它们。虽然对于世界线积分界存在带弱能量条件的奇点定理,但在某些情况下,所谓的世界体积界比世界线界更适用,例如在一些大质量自由场的情况下。本文研究了基于世界体积量子强能量不等式的积分Ricci曲率界。在一个可能非常负的全局类时里奇曲率界的附加假设下,证明了一个霍金型奇点定理。最后,我们将该定理应用于一个宇宙学场景,在世界线定理不确定的情况下证明过去的测地线不完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信