Extensions of Lorentzian Hawking–Page Solutions with Null Singularities, Spacelike Singularities, and Cauchy Horizons of Taub–NUT Type

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Serban Cicortas
{"title":"Extensions of Lorentzian Hawking–Page Solutions with Null Singularities, Spacelike Singularities, and Cauchy Horizons of Taub–NUT Type","authors":"Serban Cicortas","doi":"10.1007/s00023-024-01507-1","DOIUrl":null,"url":null,"abstract":"<div><p>Starting from the Hawking–Page solutions of [14], we consider the corresponding Lorentzian cone metrics. These represent cone interior scale-invariant vacuum solutions, defined in the chronological past of the scaling origin. We extend the Lorentzian Hawking–Page solutions to the cone exterior region in the class of <span>\\((4+1)\\)</span>-dimensional scale-invariant vacuum solutions with an <span>\\(SO(3)\\times U(1)\\)</span> isometry, using the Kaluza–Klein reduction and the methods of Christodoulou in [5]. We prove that each Lorentzian Hawking–Page solution has extensions with a null curvature singularity, extensions with a spacelike curvature singularity, and extensions with a null Cauchy horizon of Taub–NUT type. These are all the possible extensions within our symmetry class. The extensions to spacetimes with a null curvature singularity can be used to construct <span>\\((4+1)\\)</span>-dimensional asymptotically flat vacuum spacetimes with locally naked singularities, where the null curvature singularity is not preceded by trapped surfaces. We prove the instability of such locally naked singularities using the blue-shift effect of Christodoulou in [6].</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 11","pages":"3907 - 3961"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01507-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Starting from the Hawking–Page solutions of [14], we consider the corresponding Lorentzian cone metrics. These represent cone interior scale-invariant vacuum solutions, defined in the chronological past of the scaling origin. We extend the Lorentzian Hawking–Page solutions to the cone exterior region in the class of \((4+1)\)-dimensional scale-invariant vacuum solutions with an \(SO(3)\times U(1)\) isometry, using the Kaluza–Klein reduction and the methods of Christodoulou in [5]. We prove that each Lorentzian Hawking–Page solution has extensions with a null curvature singularity, extensions with a spacelike curvature singularity, and extensions with a null Cauchy horizon of Taub–NUT type. These are all the possible extensions within our symmetry class. The extensions to spacetimes with a null curvature singularity can be used to construct \((4+1)\)-dimensional asymptotically flat vacuum spacetimes with locally naked singularities, where the null curvature singularity is not preceded by trapped surfaces. We prove the instability of such locally naked singularities using the blue-shift effect of Christodoulou in [6].

具有零奇点、类空间奇点和Taub-NUT型Cauchy视界的Lorentzian Hawking-Page解的扩展
从[14]的Hawking-Page解出发,考虑相应的Lorentzian锥度规。这些代表锥体内部尺度不变的真空解,定义在尺度原点的时间顺序过去。利用Kaluza-Klein约简和Christodoulou在[5]中的方法,将Lorentzian Hawking-Page解推广到具有\(SO(3)\times U(1)\)等距的\((4+1)\)维尺度不变真空解类的锥外区域。我们证明了每一个Lorentzian Hawking-Page解都具有具有零曲率奇点的扩展、具有类空间曲率奇点的扩展和具有Taub-NUT型零柯西视界的扩展。这些是对称类中所有可能的扩展。对具有零曲率奇点的时空的扩展可用于构造具有局部裸奇点的\((4+1)\)维渐近平坦真空时空,其中零曲率奇点之前没有捕获曲面。利用[6]中Christodoulou的蓝移效应证明了这种局部裸奇点的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信