Hidden Symmetries of Generalised Gravitational Instantons

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Bernardo Araneda
{"title":"Hidden Symmetries of Generalised Gravitational Instantons","authors":"Bernardo Araneda","doi":"10.1007/s00023-024-01515-1","DOIUrl":null,"url":null,"abstract":"<div><p>For conformally Kähler Riemannian four-manifolds with a Killing field, we present a framework to solve the field equations for generalised gravitational instantons corresponding to conformal self-duality and to cosmological Einstein–Maxwell. After deriving generic identities for the curvature of such manifolds without assuming field equations, we obtain <span>\\(SU(\\infty )\\)</span> Toda formulations for the Page-Pope, Plebański–Demiański, and Chen–Teo classes, we show how to solve the (modified) Toda equation, and we use this to find conformally self-dual and Einstein–Maxwell generalisations of these geometries.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 11","pages":"4021 - 4049"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01515-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01515-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For conformally Kähler Riemannian four-manifolds with a Killing field, we present a framework to solve the field equations for generalised gravitational instantons corresponding to conformal self-duality and to cosmological Einstein–Maxwell. After deriving generic identities for the curvature of such manifolds without assuming field equations, we obtain \(SU(\infty )\) Toda formulations for the Page-Pope, Plebański–Demiański, and Chen–Teo classes, we show how to solve the (modified) Toda equation, and we use this to find conformally self-dual and Einstein–Maxwell generalisations of these geometries.

广义引力瞬子的隐藏对称性
对于具有消灭场的共形Kähler黎曼四流形,我们给出了一个框架来求解与共形自对偶和宇宙学爱因斯坦-麦克斯韦相对应的广义引力瞬子的场方程。在不假设场方程的情况下推导出这些流形曲率的一般恒等式后,我们获得了Page-Pope, Plebański-Demiański和Chen-Teo类的\(SU(\infty )\) Toda公式,我们展示了如何求解(修改的)Toda方程,并使用它来找到这些几何形状的共形自对偶和爱因斯坦-麦克斯韦推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信