Investigation into the performance of galloping piezoelectric energy harvesters with two symmetrical splitters in different arrangements

IF 3.5 3区 工程技术
Cheng-yun Zhang, Hao Wu, Bing Li, En-hao Wang, Jun-lei Wang
{"title":"Investigation into the performance of galloping piezoelectric energy harvesters with two symmetrical splitters in different arrangements","authors":"Cheng-yun Zhang,&nbsp;Hao Wu,&nbsp;Bing Li,&nbsp;En-hao Wang,&nbsp;Jun-lei Wang","doi":"10.1007/s42241-025-0031-4","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance the efficiency of wind energy harvesters, aerodynamic modifications to bluff bodies prove highly effective. This study introduces two innovative galloping piezoelectric energy harvesters (GPEHs) equipped with two symmetrical splitters on a cuboid bluff body: GPEH with upstream splitters (GPEH-US) and GPEH with downstream splitters (GPEH-DS). Wind tunnel experiments evaluated the impact of splitter angle and length on energy harvesting performance across varying wind speeds. The results indicate that larger splitter angles and shorter lengths are more favorable for energy harvesting in GPEH-US. The optimal configuration, determined as GPEH-US with <i>α</i> = 90° , <i>L</i> = 0.4<i>D</i> , reduces the threshold wind speed, expands the effective wind speed range for energy harvesting, and increases maximum voltage and power output by over 99%, 301%, respectively, compared with conventional GPEH. Conversely, GPEH-DS are less effective for energy harvesting but demonstrate potential in vibration control applications. Computational fluid dynamics (CFD) simulations using the OpenFOAM toolbox qualitatively elucidate the physical mechanisms driving these results. A larger splitter angle enables secondary small-scale vortices (SV) to absorb more energy, accelerates boundary layer separation, intensifies and disorderly vortex shedding, enhances aerodynamic instability, and improves energy harvesting performance.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"37 3","pages":"553 - 568"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-025-0031-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the efficiency of wind energy harvesters, aerodynamic modifications to bluff bodies prove highly effective. This study introduces two innovative galloping piezoelectric energy harvesters (GPEHs) equipped with two symmetrical splitters on a cuboid bluff body: GPEH with upstream splitters (GPEH-US) and GPEH with downstream splitters (GPEH-DS). Wind tunnel experiments evaluated the impact of splitter angle and length on energy harvesting performance across varying wind speeds. The results indicate that larger splitter angles and shorter lengths are more favorable for energy harvesting in GPEH-US. The optimal configuration, determined as GPEH-US with α = 90° , L = 0.4D , reduces the threshold wind speed, expands the effective wind speed range for energy harvesting, and increases maximum voltage and power output by over 99%, 301%, respectively, compared with conventional GPEH. Conversely, GPEH-DS are less effective for energy harvesting but demonstrate potential in vibration control applications. Computational fluid dynamics (CFD) simulations using the OpenFOAM toolbox qualitatively elucidate the physical mechanisms driving these results. A larger splitter angle enables secondary small-scale vortices (SV) to absorb more energy, accelerates boundary layer separation, intensifies and disorderly vortex shedding, enhances aerodynamic instability, and improves energy harvesting performance.

两种不同布置对称分路器的驰骋式压电能量采集器性能研究
为了提高风能收集器的效率,对钝体进行空气动力学修改是非常有效的。本研究介绍了两种新型奔腾式压电能量采集器(GPEH): GPEH上游分流器(GPEH- us)和GPEH下游分流器(GPEH- ds)。风洞实验评估了分离器角度和长度对不同风速下能量收集性能的影响。结果表明,较大的分离器角度和较短的分离器长度更有利于GPEH-US的能量收集。最佳配置为α = 90°,L = 0.4D的GPEH- us,降低了阈值风速,扩大了能量收集的有效风速范围,最大电压和功率输出分别比常规GPEH提高了99%和301%以上。相反,GPEH-DS在能量收集方面效果较差,但在振动控制应用方面具有潜力。使用OpenFOAM工具箱的计算流体动力学(CFD)模拟定性地阐明了驱动这些结果的物理机制。较大的分流角使次级小尺度涡吸收更多的能量,加速边界层分离,加剧无序的涡脱落,增强气动不稳定性,提高能量收集性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
12.00%
发文量
2374
审稿时长
4.6 months
期刊介绍: Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信