Deep Autoencoder Neural Networks: A Comprehensive Review and New Perspectives

IF 12.1 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ibomoiye Domor Mienye, Theo G. Swart
{"title":"Deep Autoencoder Neural Networks: A Comprehensive Review and New Perspectives","authors":"Ibomoiye Domor Mienye,&nbsp;Theo G. Swart","doi":"10.1007/s11831-025-10260-5","DOIUrl":null,"url":null,"abstract":"<div><p>Autoencoders have become a fundamental technique in deep learning (DL), significantly enhancing representation learning across various domains, including image processing, anomaly detection, and generative modelling. This paper provides a comprehensive review of autoencoder architectures, from their inception and fundamental concepts to advanced implementations such as adversarial autoencoders, convolutional autoencoders, and variational autoencoders, examining their operational mechanisms, mathematical foundations, typical applications, and their role in generative modelling. The study contributes to the field by synthesizing existing knowledge, discussing recent advancements, new perspectives, and the practical implications of autoencoders in tackling modern machine learning (ML) challenges.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 7","pages":"3981 - 4000"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11831-025-10260-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-025-10260-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Autoencoders have become a fundamental technique in deep learning (DL), significantly enhancing representation learning across various domains, including image processing, anomaly detection, and generative modelling. This paper provides a comprehensive review of autoencoder architectures, from their inception and fundamental concepts to advanced implementations such as adversarial autoencoders, convolutional autoencoders, and variational autoencoders, examining their operational mechanisms, mathematical foundations, typical applications, and their role in generative modelling. The study contributes to the field by synthesizing existing knowledge, discussing recent advancements, new perspectives, and the practical implications of autoencoders in tackling modern machine learning (ML) challenges.

深度自编码器神经网络:综述与新展望
自编码器已经成为深度学习(DL)的一项基本技术,显著增强了各个领域的表示学习,包括图像处理、异常检测和生成建模。本文提供了自编码器架构的全面回顾,从它们的开始和基本概念到高级实现,如对抗性自编码器,卷积自编码器和变分自编码器,检查它们的操作机制,数学基础,典型应用,以及它们在生成建模中的作用。该研究通过综合现有知识、讨论最新进展、新观点以及自动编码器在应对现代机器学习(ML)挑战方面的实际意义,为该领域做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.80
自引率
4.10%
发文量
153
审稿时长
>12 weeks
期刊介绍: Archives of Computational Methods in Engineering Aim and Scope: Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication. Review Format: Reviews published in the journal offer: A survey of current literature Critical exposition of topics in their full complexity By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信