A review of recent advances in data-driven computer vision methods for structural damage evaluation: algorithms, applications, challenges, and future opportunities
IF 12.1 2区 工程技术Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiao Pan, Tony T. Y. Yang, Jun Li, Carlos Ventura, Christian Málaga-Chuquitaype, Chaobin Li, Ray Kai Leung Su, Svetlana Brzev
{"title":"A review of recent advances in data-driven computer vision methods for structural damage evaluation: algorithms, applications, challenges, and future opportunities","authors":"Xiao Pan, Tony T. Y. Yang, Jun Li, Carlos Ventura, Christian Málaga-Chuquitaype, Chaobin Li, Ray Kai Leung Su, Svetlana Brzev","doi":"10.1007/s11831-025-10279-8","DOIUrl":null,"url":null,"abstract":"<div><p>Computer vision techniques have gained great traction in civil infrastructure inspection and monitoring. This paper conducted a systematic review of recent data-driven computer vision algorithms in structural damage detection published during the past 5 years. The theories of prevalent computer vision models are first reviewed with an emphasis on the progressive innovation in algorithms’ architecture. Then, recent applications of computer vision models for structural damage evaluation are discussed, which are classified into different structural categories by their material types (i.e., concrete, steel, masonry, timber) at three hierarchical levels including damage recognition, localization, and quantification. In particular, the paper also highlights the current state of using computer vision for damage assessment of timber structures, which remains under-explored compared to concrete and steel structures. Next, the paper scrutinizes existing structural damage inspection guidelines to identify key technological gaps between the capability of existing computer vision methods and manual inspection practices in the field. Finally, the paper summarizes existing challenges and recommends future research opportunities including the integration of computer vision methods with multimodal large language models, sensor-fusion, and mobile inspection approaches.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 7","pages":"4587 - 4619"},"PeriodicalIF":12.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11831-025-10279-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-025-10279-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Computer vision techniques have gained great traction in civil infrastructure inspection and monitoring. This paper conducted a systematic review of recent data-driven computer vision algorithms in structural damage detection published during the past 5 years. The theories of prevalent computer vision models are first reviewed with an emphasis on the progressive innovation in algorithms’ architecture. Then, recent applications of computer vision models for structural damage evaluation are discussed, which are classified into different structural categories by their material types (i.e., concrete, steel, masonry, timber) at three hierarchical levels including damage recognition, localization, and quantification. In particular, the paper also highlights the current state of using computer vision for damage assessment of timber structures, which remains under-explored compared to concrete and steel structures. Next, the paper scrutinizes existing structural damage inspection guidelines to identify key technological gaps between the capability of existing computer vision methods and manual inspection practices in the field. Finally, the paper summarizes existing challenges and recommends future research opportunities including the integration of computer vision methods with multimodal large language models, sensor-fusion, and mobile inspection approaches.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.