Size-resolved cloud droplet acidity over the US

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Stylianos Kakavas, Georgios Siderakis and Spyros N. Pandis
{"title":"Size-resolved cloud droplet acidity over the US","authors":"Stylianos Kakavas, Georgios Siderakis and Spyros N. Pandis","doi":"10.1039/D5EA00067J","DOIUrl":null,"url":null,"abstract":"<p >The acidity of cloud droplets can vary with size due to differences in aerosol composition and cloud chemistry and differential soluble gas uptake. Chemical transport models (CTMs) often assume that all droplets have the same composition and therefore acidity. In this work, we use the PMCAMx CTM to simulate size-resolved cloud and fog droplet acidity over the US during a winter and a summer month as a function of altitude. Small droplets are assumed to form on the activated particles smaller than 2.5 μm and have an average diameter of 20 μm, whereas large droplets form on the coarse particles and have an average diameter of 30 μm. Our simulations show that large droplets are often more alkaline than small (up to 100% lower H<small><sup>+</sup></small> concentrations) especially in regions influenced by dust. In areas with more acidic conditions, the difference in H<small><sup>+</sup></small> concentrations between small and large droplets is smaller. The pH of droplets either decreases or increases with altitude, depending on the composition of the aerosol on which the droplets were formed. Comparison of the bulk and two-section size-resolved approaches indicates that current differences in aqueous-phase sulfate concentrations over the US are generally low and usually less than 20% at approximately 10 min intervals (the most frequent difference ranges from zero to 5%). Based on our results, bulk calculations can simulate current aerosol composition and droplet pH over the US with small discrepancies. This is due to reduced SO<small><sub>2</sub></small> emissions causing SO<small><sub>2</sub></small> levels in clouds to often fall below those of H<small><sub>2</sub></small>O<small><sub>2</sub></small>. Under these conditions the importance of the pH-dependent ozone sulfate production pathway is diminished. These findings are specific to the US and may not apply to regions with higher SO<small><sub>2</sub></small> emissions.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 10","pages":" 1110-1118"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00067j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00067j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The acidity of cloud droplets can vary with size due to differences in aerosol composition and cloud chemistry and differential soluble gas uptake. Chemical transport models (CTMs) often assume that all droplets have the same composition and therefore acidity. In this work, we use the PMCAMx CTM to simulate size-resolved cloud and fog droplet acidity over the US during a winter and a summer month as a function of altitude. Small droplets are assumed to form on the activated particles smaller than 2.5 μm and have an average diameter of 20 μm, whereas large droplets form on the coarse particles and have an average diameter of 30 μm. Our simulations show that large droplets are often more alkaline than small (up to 100% lower H+ concentrations) especially in regions influenced by dust. In areas with more acidic conditions, the difference in H+ concentrations between small and large droplets is smaller. The pH of droplets either decreases or increases with altitude, depending on the composition of the aerosol on which the droplets were formed. Comparison of the bulk and two-section size-resolved approaches indicates that current differences in aqueous-phase sulfate concentrations over the US are generally low and usually less than 20% at approximately 10 min intervals (the most frequent difference ranges from zero to 5%). Based on our results, bulk calculations can simulate current aerosol composition and droplet pH over the US with small discrepancies. This is due to reduced SO2 emissions causing SO2 levels in clouds to often fall below those of H2O2. Under these conditions the importance of the pH-dependent ozone sulfate production pathway is diminished. These findings are specific to the US and may not apply to regions with higher SO2 emissions.

Abstract Image

美国上空大小分辨的云滴酸度
由于气溶胶组成和云化学的差异以及不同的可溶气体吸收,云滴的酸度会随大小而变化。化学输送模型(CTMs)通常假设所有液滴具有相同的组成和酸度。在这项工作中,我们使用PMCAMx CTM来模拟美国冬季和夏季月份的大小分辨云和雾滴酸度作为海拔的函数。粒径小于2.5 μm的活化颗粒上形成小液滴,平均直径为20 μm;粒径较大的活化颗粒上形成大液滴,平均直径为30 μm。我们的模拟表明,大液滴往往比小液滴碱性更强(高达100%低H+浓度),特别是在受灰尘影响的地区。在酸性条件较强的地区,小液滴和大液滴之间的H+浓度差异较小。液滴的pH值随海拔的升高或降低,这取决于形成液滴的气溶胶的成分。体积法和两段粒径法的比较表明,目前美国水相硫酸盐浓度的差异通常很低,间隔约10分钟通常小于20%(最常见的差异范围为0到5%)。基于我们的结果,体积计算可以模拟美国目前气溶胶成分和液滴pH值,差异很小。这是由于二氧化硫排放量的减少导致云层中的二氧化硫水平经常低于H2O2水平。在这些条件下,依赖ph的臭氧硫酸盐生产途径的重要性减弱。这些发现仅针对美国,可能不适用于二氧化硫排放量较高的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信