{"title":"Data-Driven Software-Based Power Estimation for Embedded Devices","authors":"Haoyu Wang;Xinyi Li;Ti Zhou;Man Lin","doi":"10.1109/TSUSC.2025.3567856","DOIUrl":null,"url":null,"abstract":"Energy measurement of computer devices, which are widely used in the Internet of Things (IoT), is an important yet challenging task. Most of these IoT devices lack ready-to-use hardware or software for power measurement. In this paper, we propose an easy-to-use approach to derive a software-based energy estimation model with external low-end power meters based on data-driven analysis. Our solution is demonstrated with a Jetson Nano board and Ruideng UM25C USB power meter. Various machine learning methods combined with our smart data collection & profiling method and physical measurement are explored. Periodic Long-duration measurements are utilized in the experiments to derive and validate power models, allowing more accurate power readings from the low-end power meter. Benchmarks were used to evaluate the derived software-power model for the Jetson Nano board and Raspberry Pi. The results show that 92% accuracy can be achieved by the software-based power estimation compared to measurement. A kernel module that can collect running traces of utilization and frequencies needed is developed, together with the power model derived, for power prediction for programs running in a real environment. Our cost-effective method facilitates accurate instantaneous power estimation, which low-end power meters cannot directly provide.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"10 5","pages":"937-948"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10994218/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Energy measurement of computer devices, which are widely used in the Internet of Things (IoT), is an important yet challenging task. Most of these IoT devices lack ready-to-use hardware or software for power measurement. In this paper, we propose an easy-to-use approach to derive a software-based energy estimation model with external low-end power meters based on data-driven analysis. Our solution is demonstrated with a Jetson Nano board and Ruideng UM25C USB power meter. Various machine learning methods combined with our smart data collection & profiling method and physical measurement are explored. Periodic Long-duration measurements are utilized in the experiments to derive and validate power models, allowing more accurate power readings from the low-end power meter. Benchmarks were used to evaluate the derived software-power model for the Jetson Nano board and Raspberry Pi. The results show that 92% accuracy can be achieved by the software-based power estimation compared to measurement. A kernel module that can collect running traces of utilization and frequencies needed is developed, together with the power model derived, for power prediction for programs running in a real environment. Our cost-effective method facilitates accurate instantaneous power estimation, which low-end power meters cannot directly provide.